Kristian M Finlator

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2631987/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The evolution of the Si <scp>iv</scp> content in the Universe from the epoch of reionization to cosmic noon. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2389-2401.	4.4	15
2	Using Multiple Emission Line Ratios to Constrain the Slope of the Dust Attenuation Law. Astrophysical Journal, 2022, 928, 71.	4.5	2
3	Assuming Ionization Equilibrium and the Impact on the Lyα Forest Power Spectrum during the End of Reionization at 8 ≥ z ≥ 5. Astrophysical Journal, 2022, 931, 46.	4.5	3
4	CLEAR: Boosted Lyα Transmission of the Intergalactic Medium in UV-bright Galaxies. Astrophysical Journal, 2022, 933, 87.	4.5	12
5	The effects of binary stars on galaxies and metal-enriched gas during reionization. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2207-2223.	4.4	8
6	A [C ii] 158 μm emitter associated with an O i absorber at the end of the reionization epoch. Natu Astronomy, 2021, 5, 1110-1117.	10.1	9
7	The faint host galaxies of C IV absorbers at <i>z</i> > 5. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3223-3237.	4.4	15
8	Luminous Lyα Emitters with Very Blue UV-continuum Slopes at Redshift 5.7Ââ‰ÂzÂâ‰Â6.6. Astrophysical Jourr 2020, 889, 90.	1al 4.5	15
9	Testing galaxy formation simulations with damped Lyman-α abundance and metallicity evolution. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2835-2846.	4.4	10
10	Weak evolution of the mass–metallicity relation at cosmic dawn in the FirstLight simulations. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1988-1993.	4.4	14
11	Evolution of C iv Absorbers. I. The Cosmic Incidence. Astrophysical Journal, 2020, 904, 44.	4.5	17
12	Artist: fast radiative transfer for large-scale simulations of the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5594-5611.	4.4	21
13	Evolution of neutral oxygen during the epoch of reionization and its use in estimating the neutral hydrogen fraction. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2755-2768.	4.4	13
14	Conditions for Reionizing the Universe with a Low Galaxy Ionizing Photon Escape Fraction. Astrophysical Journal, 2019, 879, 36.	4.5	201
15	Constraining the contribution of active galactic nuclei to reionization. Monthly Notices of the Royal Astronomical Society, 2018, 473, 227-240.	4.4	53
16	Reionization in Technicolor. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2628-2649.	4.4	51
17	Demographics of Star-forming Galaxies since zÂâ^1⁄4Â2.5. I. The UVJ Diagram in CANDELS. Astrophysical Journal, 2018, 858, 100.	4.5	79
18	Aligned metal absorbers and the ultraviolet background at the end of reionization. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4717-4727.	4.4	14

KRISTIAN M FINLATOR

#	Article	IF	CITATIONS
19	Equilibrium model prediction for the scatter in the star-forming main sequence. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2766-2776.	4.4	33
20	The minimum halo mass for star formation at <i>z</i> Â= 6–8. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1633-1639.	4.4	21
21	Epoch of reionization 21Âcm forecasting from MCMC-constrained semi-numerical models. Monthly Notices of the Royal Astronomical Society, 2017, 468, 122-139.	4.4	33
22	Probing the Metal Enrichment of the Intergalactic Medium at zÂ=Â5–6 Using the Hubble Space Telescope. Astrophysical Journal Letters, 2017, 849, L18.	8.3	13
23	The Spectral Evolution of the First Galaxies. III. Simulated James Webb Space Telescope Spectra of Reionization-epoch Galaxies with Lyman-continuum Leakage. Astrophysical Journal, 2017, 836, 78.	4.5	48
24	Gas Accretion and Galactic Chemical Evolution: Theory and Observations. Astrophysics and Space Science Library, 2017, , 221-248.	2.7	16
25	PHYSICAL PROPERTIES OF SPECTROSCOPICALLY CONFIRMED GALAXIES AT zÂ≥Â6. III. STELLAR POPULATION: FROM SED MODELING WITH SECURE Lyα EMISSION AND REDSHIFTS*. Astrophysical Journal, 2016, 816, 16.	S 4.5	35
26	Simulating the 21Âcm signal from reionization including non-linear ionizations and inhomogeneous recombinations. Monthly Notices of the Royal Astronomical Society, 2016, 457, 1550-1567.	4.4	46
27	Merging galaxies produce outliers from the fundamental metallicity relation. Monthly Notices of the Royal Astronomical Society, 2015, 451, 4005-4017.	4.4	17
28	THE RELATION BETWEEN STAR FORMATION RATE AND STELLAR MASS FOR GALAXIES AT 3.5 ⩽ <i>z</i> ⩽ <candels. 183.<="" 2015,="" 799,="" astrophysical="" journal,="" td=""><td>6.5 IN 4.5</td><td>253</td></candels.>	6.5 IN 4.5	253
29	Equilibrium model constraints on baryon cycling across cosmic time. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1184-1200.	4.4	65
30	The reionization of carbon. Monthly Notices of the Royal Astronomical Society, 2015, 447, 2526-2539.	4.4	40
31	A CRITICAL ASSESSMENT OF STELLAR MASS MEASUREMENT METHODS. Astrophysical Journal, 2015, 808, 101.	4.5	106
32	SEMI-ANALYTIC MODELS FOR THE CANDELS SURVEY: COMPARISON OF PREDICTIONS FOR INTRINSIC GALAXY PROPERTIES. Astrophysical Journal, 2014, 795, 123.	4.5	91
33	The host haloes of O i absorbers in the reionization epoch. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1818-1835.	4.4	37
34	A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION. Astrophysical Journal, 2013, 775, 93.	4.5	290
35	PHYSICAL PROPERTIES OF SPECTROSCOPICALLY CONFIRMED GALAXIES AT <i>z</i> ⩾ 6. I. BASIC CHARACTERISTICS OF THE REST-FRAME UV CONTINUUM AND Lyî± EMISSION. Astrophysical Journal, 2013, 772, 99.	4.5	62
36	THE METALLICITY EVOLUTION OF LOW-MASS GALAXIES: NEW CONSTRAINTS AT INTERMEDIATE REDSHIFT. Astrophysical Journal, 2013, 769, 148.	4.5	52

Kristian M Finlator

#	Article	IF	CITATIONS
37	PHYSICAL PROPERTIES OF SPECTROSCOPICALLY CONFIRMED GALAXIES AT $\langle i \rangle_z \langle i \rangle_a @ 3/4 6$. II. MORPHOLOGY OF THE REST-FRAME UV CONTINUUM AND Lyα EMISSION. Astrophysical Journal, 2013, 773, 153.	4.5	73
38	SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS. Astrophysical Journal, 2013, 769, 80.	4.5	220
39	CONSTRAINTS ON THE IONIZING EFFICIENCY OF THE FIRST GALAXIES. Astrophysical Journal Letters, 2012, 759, L38.	8.3	68
40	A fundamental problem in our understanding of low-mass galaxy evolution. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2797-2812.	4.4	139
41	Gas clumping in self-consistent reionization models. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2464-2479.	4.4	104
42	CANDELS: THE EVOLUTION OF GALAXY REST-FRAME ULTRAVIOLET COLORS FROM <i>z</i> = 8 TO 4. Astrophysical Journal, 2012, 756, 164.	4.5	256
43	CANDELS: THE CONTRIBUTION OF THE OBSERVED GALAXY POPULATION TO COSMIC REIONIZATION. Astrophysical Journal, 2012, 758, 93.	4.5	174
44	Recent Advances in Cosmological Hydrogen Reionization. , 2012, , .		0
45	GALACTIC OUTFLOWS AND PHOTOIONIZATION HEATING IN THE REIONIZATION EPOCH. Astrophysical Journal, 2011, 743, 169.	4.5	69
46	METALS REMOVED BY OUTFLOWS FROM MILKY WAY DWARF SPHEROIDAL GALAXIES. Astrophysical Journal Letters, 2011, 742, L25.	8.3	63
47	Galaxy evolution in cosmological simulations with outflows - I. Stellar masses and star formation rates. Monthly Notices of the Royal Astronomical Society, 2011, 415, 11-31.	4.4	297
48	Galaxy evolution in cosmological simulations with outflows - II. Metallicities and gas fractions. Monthly Notices of the Royal Astronomical Society, 2011, 416, 1354-1376.	4.4	335
49	Quenching massive galaxies with on-the-fly feedback in cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2676-2695.	4.4	67
50	An analytic model for the evolution of the stellar, gas and metal content of galaxies. Monthly Notices of the Royal Astronomical Society, 2011, , no-no.	4.4	279
51	Smoothly rising star formation histories during the reionization epoch. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	75
52	The nature of submillimetre galaxies in cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	89
53	How is star formation quenched in massive galaxies?. Monthly Notices of the Royal Astronomical Society, 2010, 407, 749-771.	4.4	75
54	A new moment method for continuum radiative transfer in cosmological re-ionization. Monthly Notices of the Royal Astronomical Society, 2009, 393, 1090-1106.	4.4	50

Kristian M Finlator

#	Article	IF	CITATIONS
55	Tracing the re-ionization-epoch intergalactic medium with metal absorption lines. Monthly Notices of the Royal Astronomical Society, 2009, 396, 729-758.	4.4	81
56	The late reionization of filaments. Monthly Notices of the Royal Astronomical Society, 2009, 400, 1049-1061.	4.4	42
57	The origin of the galaxy mass–metallicity relation and implications for galactic outflows. Monthly Notices of the Royal Astronomical Society, 2008, 385, 2181-2204.	4.4	380
58	The Mass-Metallicity Relation in Cosmological Hydrodynamic Simulations. EAS Publications Series, 2007, 24, 183-189.	0.3	4
59	Constraints on physical properties of z â^1⁄4 6 galaxies using cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2007, 376, 1861-1878.	4.4	71
60	When Does the Intergalactic Medium Become Enriched?. EAS Publications Series, 2007, 24, 157-162.	0.3	3
61	Measuring the Average Evolution of Luminous Galaxies atz< 3: The Restâ€Frame Optical Luminosity Density, Spectral Energy Distribution, and Stellar Mass Density. Astrophysical Journal, 2006, 650, 624-643.	4.5	90
62	The Physical and Photometric Properties of Highâ€Redshift Galaxies in Cosmological Hydrodynamic Simulations. Astrophysical Journal, 2006, 639, 672-694.	4.5	95
63	The physical properties and detectability of reionization-epoch galaxies. Monthly Notices of the Royal Astronomical Society, 2006, 370, 273-288.	4.4	76
64	Optical and Radio Properties of Extragalactic Sources Observed by the FIRST Survey and the Sloan Digital Sky Survey. Astronomical Journal, 2002, 124, 2364-2400.	4.7	416
65	The Optical, Infrared and Radio Properties of Extragalactic Sources Observed by SDSS, 2MASS and FIRST Surveys. International Astronomical Union Colloquium, 2002, 184, 137-146.	0.1	1
66	Solar System Objects Observed in the Sloan Digital Sky Survey Commissioning Data. Astronomical Journal, 2001, 122, 2749-2784.	4.7	381
67	Candidate RR Lyrae Stars Found in Sloan Digital Sky Survey Commissioning Data. Astronomical Journal, 2000, 120, 963-977.	4.7	208
68	Optical and Infrared Colors of Stars Observed by the Two Micron All Sky Survey and the Sloan Digital Sky Survey. Astronomical Journal, 2000, 120, 2615-2626.	4.7	115
69	The Soft, Fluctuating UVB at <i>z</i> â^1⁄4 6 as Traced by C IV, Si IV, and C II. Monthly Notices of the Astronomical Society, 0, , stw805.	Royal 4.4	26