Chang Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/263184/publications.pdf

Version: 2024-02-01

623699 752679 20 853 14 20 citations g-index h-index papers 20 20 20 1154 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Effect of antibiotics in the environment on microbial populations. Applied Microbiology and Biotechnology, 2010, 87, 925-941.	3.6	358
2	Complete Debromination of Tetra- and Penta-Brominated Diphenyl Ethers by a Coculture Consisting of <i>Dehalococcoides</i> and <i>Desulfovibrio</i> Species. Environmental Science & Desulfovibrio 2011, 45, 8475-8482.	10.0	70
3	A <scp><i>D</i></scp> <i>esulfitobacterium</i> strain <scp>PR</scp> reductively dechlorinates both 1,1,1â€trichloroethane and chloroform. Environmental Microbiology, 2014, 16, 3387-3397.	3.8	58
4	Isolation of Acetobacterium sp. Strain AG, Which Reductively Debrominates Octa- and Pentabrominated Diphenyl Ether Technical Mixtures. Applied and Environmental Microbiology, 2013, 79, 1110-1117.	3.1	51
5	Novel evidence of cytochrome P450-catalyzed oxidation of phenanthrene in Phanerochaete chrysosporium under ligninolytic conditions. Biodegradation, 2010, 21, 889-901.	3.0	37
6	Reductive Debromination of Polybrominated Diphenyl Ethers - Microbes, Processes and Dehalogenases. Frontiers in Microbiology, 2018, 9, 1292.	3.5	37
7	Molecular techniques in the biotechnological fight against halogenated compounds in anoxic environments. Microbial Biotechnology, 2012, 5, 347-367.	4.2	29
8	Loss of the <i>ssrA</i> genome island led to partial debromination in the PBDE respiring <i>Dehalococcoides mccartyi</i> strain GY50. Environmental Microbiology, 2017, 19, 2906-2915.	3.8	27
9	Analysis of enhanced nitrogen removal mechanisms in a validation wastewater treatment plant containing anammox bacteria. Applied Microbiology and Biotechnology, 2019, 103, 1255-1265.	3.6	25
10	<i>Dehalococcoides mccartyi</i> Strain GEO12 Has a Natural Tolerance to Chloroform Inhibition. Environmental Science & Environ	10.0	23
11	Anaerobic Ammonium Oxidation (Anammox) with Planktonic Cells in a Redox-Stable Semicontinuous Stirred-Tank Reactor. Environmental Science & Environmen	10.0	22
12	Identification of Reductive Dehalogenases That Mediate Complete Debromination of Penta- and Tetrabrominated Diphenyl Ethers in <i>Dehalococcoides</i> spp Applied and Environmental Microbiology, 2021, 87, e0060221.	3.1	19
13	Detoxification of 1,1,2-Trichloroethane to Ethene by Desulfitobacterium and Identification of Its Functional Reductase Gene. PLoS ONE, 2015, 10, e0119507.	2.5	19
14	Genomic characterization of <i>Dehalococcoides mccartyi</i> strain 11a5 reveals a circular extrachromosomal genetic element and a new tetrachloroethene reductive dehalogenase gene. FEMS Microbiology Ecology, 2017, 93, fiw235.	2.7	18
15	16S rRNA gene-based primer pair showed high specificity and quantification accuracy in detecting freshwater Brocadiales anammox bacteria. FEMS Microbiology Ecology, 2020, 96, .	2.7	14
16	Growth of Dehalococcoides mccartyi species in an autotrophic consortium producing limited acetate. Biodegradation, 2018, 29, 487-498.	3.0	11
17	Diversity of organohalide respiring bacteria and reductive dehalogenases that detoxify polybrominated diphenyl ethers in E-waste recycling sites. ISME Journal, 2022, 16, 2123-2131.	9.8	11
18	Comparative genomics in "Candidatus Kuenenia stuttgartiensis―reveal high genomic plasticity in the overall genome structure, CRISPR loci and surface proteins. BMC Genomics, 2020, 21, 851.	2.8	10

#	Article	IF	CITATIONS
19	The impact of species, respiration type, growth phase and genetic inventory on absolute metal content of intact bacterial cells. Metallomics, 2019, 11, 925-935.	2.4	9
20	Characterization of membrane-bound metalloproteins in the anaerobic ammonium-oxidizing bacterium "Candidatus Kuenenia stuttgartiensis―strain CSTR1. Talanta, 2021, 223, 121711.	5.5	5