List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2631674/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diffusion Activation Energy and Desorption Activation Energy for Astrochemically Relevant Species on Water Ice Show No Clear Relation. Astrophysical Journal Letters, 2022, 933, L16.	8.3	11
2	Penetration of Nonenergetic Hydrogen Atoms into Amorphous Solid Water and their Reaction with Embedded Benzene and Naphthalene. Astrophysical Journal, 2022, 933, 138.	4.5	2
3	Rapid Ortho-to-para Nuclear Spin Conversion of H ₂ on a Silicate Dust Surface. Astrophysical Journal, 2021, 908, 234.	4.5	11
4	Formation of chiral CO polyhedral crystals on icy interstellar grains. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1530-1542.	4.4	13
5	Transmission Electron Microscopy Study of the Morphology of Ices Composed of H ₂ 0, CO ₂ , and CO on Refractory Grains. Astrophysical Journal, 2021, 918, 45.	4.5	27
6	Experimental and Computational Studies on the Physicochemical Behavior of Phosphine Induced by Reactions with H and D Atoms on Interstellar Ice Grains. Astrophysical Journal, 2021, 918, 73.	4.5	9
7	Delivery of Electrons by Proton-Hole Transfer in Ice at 10 K: Role of Surface OH Radicals. Journal of Physical Chemistry Letters, 2021, 12, 704-710.	4.6	6
8	Efficient Formation Pathway of Methyl Formate: The Role of OH Radicals on Ice Dust. Astrophysical Journal Letters, 2021, 921, L13.	8.3	11
9	Successive H-atom Addition to Solid OCS on Compact Amorphous Solid Water. Astrophysical Journal, 2021, 922, 146.	4.5	10
10	Measurements of Ortho-to-para Nuclear Spin Conversion of H ₂ on Low-temperature Carbonaceous Grain Analogs: Diamond-like Carbon and Graphite. Astrophysical Journal, 2021, 923, 71.	4.5	5
11	UV-Induced Formation of Ice XI Observed Using an Ultra-High Vacuum Cryogenic Transmission Electron Microscope and its Implications for Planetary Science. Frontiers in Chemistry, 2021, 9, 799851.	3.6	7
12	UV-ray irradiation never causes amorphization of crystalline CO2: A transmission electron microscopy study. Chemical Physics Letters, 2020, 760, 137999.	2.6	10
13	Photostimulated desorption of OH radicals from amorphous solid water: Evidence for the interaction of visible light with an OH-ice complex. Physical Review A, 2020, 102, .	2.5	15
14	Precometary organic matter: A hidden reservoir of water inside the snow line. Scientific Reports, 2020, 10, 7755.	3.3	16
15	Direct Measurements of Activation Energies for Surface Diffusion of CO and CO ₂ on Amorphous Solid Water Using In Situ Transmission Electron Microscopy. Astrophysical Journal Letters, 2020, 891, L22.	8.3	22
16	Diffusive Hydrogenation Reactions of CO Embedded in Amorphous Solid Water at Elevated Temperatures â°1⁄470 K. Astrophysical Journal, 2020, 900, 187.	4.5	9
17	An Experimental Study of Chemical Desorption for Phosphine in Interstellar Ice. Astrophysical Journal Letters, 2020, 898, L52.	8.3	16
18	Nucleobase synthesis in interstellar ices. Nature Communications, 2019, 10, 4413.	12.8	65

#	Article	IF	CITATIONS
19	Interactions of Atomic and Molecular Hydrogen with a Diamond-like Carbon Surface: H ₂ Formation and Desorption. Astrophysical Journal, 2019, 878, 23.	4.5	11
20	Physico-chemical Behavior of Hydrogen Sulfide Induced by Reactions with H and D Atoms on Different Types of Ice Surfaces at Low Temperature. Astrophysical Journal, 2019, 874, 124.	4.5	13
21	Molecular and isotopic compositions of nitrogen-containing organic molecules formed during UV-irradiation of simulated interstellar ice. Geochemical Journal, 2019, 53, 5-20.	1.0	6
22	An infrared measurement of chemical desorption from interstellar ice analogues. Nature Astronomy, 2018, 2, 228-232.	10.1	59
23	Liquid-like behavior of UV-irradiated interstellar ice analog at low temperatures. Science Advances, 2017, 3, eaao2538.	10.3	32
24	Evolution of Morphological and Physical Properties of Laboratory Interstellar Organic Residues with Ultraviolet Irradiation. Astrophysical Journal, 2017, 837, 35.	4.5	17
25	Deuterium Fractionation upon the Formation of Hexamethylenetetramines through Photochemical Reactions of Interstellar Ice Analogs Containing Deuterated Methanol Isotopologues. Astrophysical Journal, 2017, 849, 122.	4.5	13
26	DEUTERIUM FRACTIONATION DURING AMINO ACID FORMATION BY PHOTOLYSIS OF INTERSTELLAR ICE ANALOGS CONTAINING DEUTERATED METHANOL. Astrophysical Journal Letters, 2016, 827, L18.	8.3	26
27	Hydrogen–deuterium substitution in solid ethanol by surface reactions at low temperatures. Monthly Notices of the Royal Astronomical Society, 2016, 462, 689-695.	4.4	9
28	Surface Temperature Dependence of Hydrogen Ortho-Para Conversion on Amorphous Solid Water. Physical Review Letters, 2016, 116, 253201.	7.8	25
29	Matrix sublimation method for the formation of high-density amorphous ice. Chemical Physics Letters, 2016, 658, 287-292.	2.6	20
30	Statistical ortho-to-para ratio of water desorbed from ice at 10 kelvin. Science, 2016, 351, 65-67.	12.6	61
31	Signatures of Quantum-Tunneling Diffusion of Hydrogen Atoms on Water Ice at 10ÂK. Physical Review Letters, 2015, 115, 133201.	7.8	47
32	Quantum tunneling observed without its characteristic large kinetic isotope effects. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7438-7443.	7.1	25
33	Reaction kinetics and isotope effect of water formation by the surface reaction of solid H ₂ O ₂ with H atoms at low temperatures. Faraday Discussions, 2014, 168, 185.	3.2	29
34	Hydrogen isotopic substitution of solid methylamine through atomic surface reactions at low temperatures: A potential contribution to the D/H ratio of methylamine in molecular clouds. Meteoritics and Planetary Science, 2014, 49, 117-132.	1.6	15
35	THE MECHANISM OF SURFACE DIFFUSION OF H AND D ATOMS ON AMORPHOUS SOLID WATER: EXISTENCE OF VARIOUS POTENTIAL SITES. Astrophysical Journal, 2012, 757, 185.	4.5	75
36	WATER FORMATION THROUGH A QUANTUM TUNNELING SURFACE REACTION, OH + H ₂ , AT 10 K. Astrophysical Journal, 2012, 749, 67.	4.5	97

#	Article	IF	CITATIONS
37	Experimental studies of surface reactions among OH radicals that yield H2O and CO2 at 40–60 K. Physical Chemistry Chemical Physics, 2011, 13, 15792.	2.8	39
38	FTIR study of ammonia formation via the successive hydrogenation of N atoms trapped in a solid N2 matrix at low temperatures. Physical Chemistry Chemical Physics, 2011, 13, 15798.	2.8	36
39	DIRECT MEASUREMENTS OF HYDROGEN ATOM DIFFUSION AND THE SPIN TEMPERATURE OF NASCENT H ₂ MOLECULE ON AMORPHOUS SOLID WATER. Astrophysical Journal Letters, 2010, 714, L233-L237.	8.3	98
40	EXPERIMENTAL STUDY OF CO ₂ FORMATION BY SURFACE REACTIONS OF NON-ENERGETIC OH RADICALS WITH CO MOLECULES. Astrophysical Journal Letters, 2010, 712, L174-L178.	8.3	92
41	REACTION ROUTES IN THE CO-H ₂ CO- <i>d_n</i> CH ₃ OH- <i>d_m</i> SYSTEM CLARIFIED FROM H(D) EXPOSURE OF SOLID FORMALDEHYDE AT LOW TEMPERATURES. Astrophysical lournal, 2009, 702, 291-300.	4.5	89
42	FORMATION OF COMPACT AMORPHOUS H ₂ 0 ICE BY CODEPOSITION OF HYDROGEN ATOMS WITH OXYGEN MOLECULES ON GRAIN SURFACES. Astrophysical Journal, 2009, 701, 464-470.	4.5	115
43	lce surface reactions: A key to chemical evolution in space. Progress in Surface Science, 2008, 83, 439-489.	8.3	185
44	Formation of hydrogen peroxide and water from the reaction of cold hydrogen atoms with solid oxygen at 10K. Chemical Physics Letters, 2008, 456, 27-30.	2.6	158
45	Temperature, composition, and hydrogen isotope effect in the hydrogenation of CO on amorphous ice surface at 10–20K. Journal of Chemical Physics, 2007, 126, 204707.	3.0	67
46	Laboratory Simulation of Competition between Hydrogenation and Photolysis in the Chemical Evolution of H ₂ O O Ice Mixtures. Astrophysical Journal, 2007, 668, 1001-1011.	4.5	79
47	Effective Rate Constants for the Surface Reaction between Solid Methanol and Deuterium Atoms at 10 K. Journal of Physical Chemistry A, 2007, 111, 3016-3028.	2.5	59
48	Dependence of the effective rate constants for the hydrogenation of CO on the temperature and composition of the surface. Planetary and Space Science, 2006, 54, 1107-1114.	1.7	46
49	H-D Substitution in Interstellar Solid Methanol: A Key Route for D Enrichment. Astrophysical Journal, 2005, 624, L29-L32.	4.5	92
50	Novel Routes for Diamond Formation in Interstellar Ices and Meteoritic Parent Bodies. Astrophysical Journal, 2005, 626, L129-L132.	4.5	40
51	The role of interstellar organic materials in the formation and evolution of asteroids and meteorites. Ganseki Kobutsu Kagaku, 2005, 34, 114-126.	0.1	0
52	Hydrogenation of CO on Pure Solid CO and COâ€H2O Mixed Ice. Astrophysical Journal, 2004, 616, 638-642.	4.5	176
53	Conversion of H2CO to CH3OH by Reactions of Cold Atomic Hydrogen on Ice Surfaces below 20 K. Astrophysical Journal, 2004, 614, 1124-1131.	4.5	107
54	The Dependence of H 2 CO and CH 3 OH Formation on the Temperature and Thickness of H 2 O-CO Ice during the Successive Hydrogenation of CO. Astrophysical Journal, 2003, 588, L121-L124.	4.5	149

#	Article	IF	CITATIONS
55	Evaporation of Interstellar Organic Materials in the Solar Nebula. Astrophysical Journal, 2003, 592, 1252-1262.	4.5	32
56	Alteration of interstellar organic materials in meteorites' parent bodies. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2002, 78, 277-281.	3.8	19
57	Rapid Growth of Asteroids Owing to Very Sticky Interstellar Organic Grains. Astrophysical Journal, 2002, 566, L121-L124.	4.5	63
58	Efficient Formation of Formaldehyde and Methanol by the Addition of Hydrogen Atoms to CO in H[TINF]2[/TINF]O-CO Ice at 10 K. Astrophysical Journal, 2002, 571, L173-L176.	4.5	443
59	The role of sticky interstellar organic material in the formation of asteroids. Meteoritics and Planetary Science, 2002, 37, 1975-1983.	1.6	23
60	Interstellar dust, chirality, comets and the origins of life: Life from dead stars?. Journal of Biological Physics, 1995, 20, 61-70.	1.5	68
61	Amorphization of cubic ice by ultraviolet irradiation. Nature, 1990, 344, 134-135.	27.8	135
62	Evaporation of H2O—CO ice and its astrophysical implications. Journal of Crystal Growth, 1990, 99, 1220-1226.	1.5	93
63	Vapour pressure of amorphous H2O ice and its astrophysical implications. Nature, 1987, 330, 550-552.	27.8	97