Petr ZÃ;mostný

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2631245/publications.pdf Version: 2024-02-01

DETD 7Ã:MOSTNÃ1/2

#	Article	IF	CITATIONS
1	Hydrodeoxygenation of aldehydes catalyzed by supported palladium catalysts. Applied Catalysis A: General, 2007, 332, 56-64.	2.2	83
2	Experimental study of hydrocarbon structure effects on the composition of its pyrolysis products. Journal of Analytical and Applied Pyrolysis, 2010, 87, 207-216.	2.6	79
3	The kinetic model of thermal cracking for olefins production. Chemical Engineering and Processing: Process Intensification, 2003, 42, 461-473.	1.8	75
4	Hydrodeoxygenation of benzophenone on Pd catalysts. Applied Catalysis A: General, 2005, 296, 169-175.	2.2	64
5	On the mechanism of colloidal silica action to improve flow properties of pharmaceutical excipients. International Journal of Pharmaceutics, 2019, 556, 383-394.	2.6	38
6	A software for regression analysis of kinetic data. Computers & Chemistry, 1999, 23, 479-485.	1.2	35
7	Application of randomâ€search algorithm for regression analysis of catalytic hydrogenations. Canadian Journal of Chemical Engineering, 1997, 75, 735-742.	0.9	33
8	Effect of colloidal silica on rheological properties of common pharmaceutical excipients. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 106, 2-8.	2.0	30
9	Identification of kinetic models of heterogeneously catalyzed reactions. Applied Catalysis A: General, 2002, 225, 291-299.	2.2	26
10	Improving the steam-cracking efficiency of naphtha feedstocks by mixed/separate processing. Journal of Analytical and Applied Pyrolysis, 2020, 146, 104768.	2.6	26
11	Investigation of Dissolution Mechanism and Release Kinetics of Poorly Water-Soluble Tadalafil from Amorphous Solid Dispersions Prepared by Various Methods. Pharmaceutics, 2019, 11, 383.	2.0	25
12	Generalized model of n-heptane pyrolysis and steam cracking kinetics based on automated reaction network generation. Journal of Analytical and Applied Pyrolysis, 2014, 109, 159-167.	2.6	24
13	Hydrogenation and Hydrogenolysis of Acetophenone. Collection of Czechoslovak Chemical Communications, 2003, 68, 1969-1984.	1.0	22
14	Production of olefins via steam cracking of vegetable oils. Resources, Conservation and Recycling, 2012, 59, 47-51.	5.3	21
15	Preparation of solid dispersions with respect to the dissolution rate of active substance. Journal of Drug Delivery Science and Technology, 2020, 56, 101518.	1.4	18
16	Generalized Model of Hydrocarbons Pyrolysis Using Automated Reactions Network Generation. Industrial & Engineering Chemistry Research, 2013, 52, 15407-15416.	1.8	17
17	A Novel Approach for the Prediction of Hydrocarbon Thermal Cracking Product Yields from the Substitute Feedstock Composition. Chemical Engineering and Technology, 2005, 28, 1166-1176.	0.9	15
18	A rate—controlling step in langmuir—hinshelwood kinetic models. Canadian Journal of Chemical Engineering, 2000, 78, 513-521.	0.9	14

Petr ZÃimostný

#	Article	IF	CITATIONS
19	Increasing dissolution of trospium chloride by co-crystallization with urea. Journal of Crystal Growth, 2014, 399, 19-26.	0.7	13
20	Prediction of drug-polymer interactions in binary mixtures using energy balance supported by inverse gas chromatography. European Journal of Pharmaceutical Sciences, 2019, 130, 247-259.	1.9	13
21	Effect of co-milling on dissolution rate of poorly soluble drugs. International Journal of Pharmaceutics, 2021, 597, 120312.	2.6	13
22	Application of hydrocarbon cracking experiments to ethylene unit control and optimization. Petroleum Chemistry, 2006, 46, 237-245.	0.4	12
23	ANN modelling of pyrolysis utilising the characterisation of atmospheric gas oil based on incomplete data. Chemical Engineering Science, 2007, 62, 5021-5025.	1.9	11
24	Mathematical model of Fischer-Tropsch synthesis using variable alpha-parameter to predict product distribution. Fuel, 2019, 243, 603-609.	3.4	11
25	Application of a Semiâ€Mechanistic Model for Cracking Unit Balance. Chemical Engineering and Technology, 2015, 38, 609-618.	0.9	10
26	Hydrogen production by catalysed pyrolysis of polymer blends. Fuel, 2011, 90, 2334-2339.	3.4	8
27	Effective characterization of petroleum C7+ fractions. Fuel, 2012, 102, 545-553.	3.4	8
28	Effect of Maize Starch Excipient Properties on Drug Release Rate. Procedia Engineering, 2012, 42, 482-488.	1.2	8
29	Fischerâ€Tropsch Wax from Renewable Resources as an Excellent Feedstock for the Steamâ€Cracking Process. Chemical Engineering and Technology, 2021, 44, 329-338.	0.9	8
30	Mechanistic study of dissolution enhancement by interactive mixtures of chitosan with meloxicam as model. European Journal of Pharmaceutical Sciences, 2022, 169, 106087.	1.9	8
31	Olefin production through pyrolysis of triacylglycerols. Lipid Technology, 2009, 21, 220-223.	0.3	7
32	Evaluation of Functional Characteristics of Lactose by Inverse Gas Chromatography. Procedia Engineering, 2012, 42, 644-650.	1.2	7
33	Compression of anisometric granular materials. Powder Technology, 2019, 342, 887-898.	2.1	7
34	Using the Semi-mechanistic Steam-cracking Model to Improve Steam-Cracker Operation. Procedia Engineering, 2012, 42, 1946-1954.	1.2	6
35	Adhesion force measurement by centrifuge technique as tool for predicting interactive mixture stability. Chemical Engineering Research and Design, 2021, 165, 467-476.	2.7	6
36	Experimental Evaluation of Hydrotreated Vegetable Oils as Novel Feedstocks for Steam-Cracking Process. Processes, 2021, 9, 1504.	1.3	6

Petr ZÃimostný

#	Article	IF	CITATIONS
37	Stress-Dependent Particle Interactions of Magnesium Aluminometasilicates as Their Performance Factor in Powder Flow and Compaction Applications. Materials, 2021, 14, 900.	1.3	5
38	Meloxicam Carrier Systems Having Enhanced Release and Aqueous Wettability Prepared Using Micro-suspensions in Different Liquid Media. AAPS PharmSciTech, 2020, 21, 155.	1.5	5
39	Effect of polymer type on the surface energy of acetaminophen solid dispersions prepared by melt method. International Journal of Pharmaceutics, 2017, 530, 107-112.	2.6	4
40	Analysis of Drug Release from Different Agglomerates Using a Mathmatical Model. Dissolution Technologies, 2014, 21, 40-47.	0.2	4
41	Propylene column pressure relief valves chattering resulting in explosion and fire of the Steam Cracker unit. Journal of Loss Prevention in the Process Industries, 2022, 74, 104658.	1.7	4
42	Prediction of Dissolution Behavior of Final Dosage forms Prepared by Different Granulation Methods. Procedia Engineering, 2012, 42, 1463-1473.	1.2	3
43	Breakage of anisometric rod-shaped particles. Particulate Science and Technology, 2018, 36, 432-437.	1.1	3
44	Simplifying Complex Computer-Generated Reactions Network to Suppress Its Stiffness. Procedia Engineering, 2012, 42, 1624-1633.	1.2	2
45	Effect of dirty-hold time on cleaning process of pharmaceutical equipment. Pharmaceutical Development and Technology, 2013, 18, 274-279.	1.1	2
46	Semi-mechanistic Model Applied to the Search for Economically Optimal Conditions and Blending of Gasoline Feedstock for Steam-cracking Process. MATEC Web of Conferences, 2016, 62, 04004.	0.1	2
47	Substitute Composition of Naphtha Based on Density, SIMDIST, and PIONA for Modeling of Steam Cracking. Chemical Engineering and Technology, 2017, 40, 1008-1015.	0.9	2
48	Streamlining of the Powder Mixing Process based on a Segregation Test. AAPS PharmSciTech, 2021, 22, 190.	1.5	2
49	Application of pyrolysis-capillary gas chromatography with NPD detection in thermal degradation of polyphosphazenes study. Open Chemistry, 2007, 5, 271-290.	1.0	1
50	Dirty-Hold Time Effect on the Cleaning Process Efficiency. Procedia Engineering, 2012, 42, 431-436.	1.2	1
51	Dry-Swabbing/Image Analysis Technique for the Pharmaceutical Equipment Cleaning Validation. Procedia Engineering, 2012, 42, 447-453.	1.2	1
52	Investigation of tadalafil molecular arrangement in solid dispersions using inverse gas chromatography and Raman mapping. International Journal of Pharmaceutics, 2022, 623, 121955.	2.6	1