Qing-Wen Wang

List of Publications by Year in descending order

[^0]

1 On the solutions of a class of tensor equations. Linear and Multilinear Algebra, 2022, 70, 6141-6154. 1

Quaternion Matrix Optimization: Motivation and Analysis. Journal of Optimization Theory and Applications, 2022, 193, 621-648.
0.8

20

On RGI Algorithms for Solving Sylvester Tensor Equations. Taiwanese Journal of Mathematics, 2022, 26,

4 An Exact Solution to a Quaternion Matrix Equation with an Application. Symmetry, 2022, 14, 375.
1.1

25

Three Symmetrical Systems of Coupled Sylvester-like Quaternion Matrix Equations. Symmetry, 2022, 14,
$5 \begin{array}{ll} & \text { Three } \\ 550 .\end{array}$
1.1

6 The common solution of twelve matrix equations over the quaternions. Filomat, 2022, 36, 887-903.
0.21
$7 \quad$ A constrained system of matrix equations. Computational and Applied Mathematics, 2022, $41,1$.
1.0

11

8 Solving a System of Sylvester-like Quaternion Matrix Equations. Symmetry, 2022, 14, 1056.
1.1

11
9. A Modified Conjugate Residual Method and Nearest Kronecker Product Preconditioner for the
$9 \quad$ Generalized Coupled Sylvester Tensor Equations. Mathematics, 2022, 10, 1730.

10 A Sylvester-Type Matrix Equation over the Hamilton Quaternions with an Application. Mathematics, 2022, 10, 1758.
1.1

11

11 The Minimum-Norm Least Squares Solutions to Quaternion Tensor Systems. Symmetry, 2022, 14, 1460.
1.1

5

12 Numerical method for the generalized nonnegative tensor factorization problem. Numerical Algorithms, 2021, 87, 499-510.
1.1

0

More Generalizations of Hartfielấ $€^{T M}$ s Inequality and the Brunnâ $€^{" M}$ Minkowski Inequality. Bulletin of the Iranian Mathematical Society, 2021, 47, 21-29.

Least squares solution of the quaternion Sylvester tensor equation. Linear and Multilinear Algebra, 2021, 69, 104-130.

Hermitian and skew-Hermitian splitting methods for solving a tensor equation. International Journal of Computer Mathematics, 2021, 98, 1274-1290.

Algebraic conditions for the solvability to some systems of matrix equations. Linear and Multilinear Algebra, 2021, 69, 1579-1609.

Quantum coherence measures based on Fisher information with applications. Physical Review A, 2021,
103,.
1.0

An efficient algorithm for solving the nonnegative tensor least squares problem. Numerical Linear
Algebra With Applications, 2021, 28, e2385.
Weighted Moore-Penrose Inverses and Weighted Core Inverses in Rings with Involution. Chinese
Annals of Mathematics Series B, 2021, 42, 613-624.

Developing iterative algorithms to solve Sylvester tensor equations. Applied Mathematics and Computation, 2021, 409, 126403.

Explicit solutions of the Yang-Baxter-like matrix equation for a singular diagonalizable matrix with
three distinct eigenvalues. Filomat, 2021, 35, 3971-3982.

The extreme points of certain polytopes of doubly substochastic matrices. Linear and Multilinear
Algebra, 2020, 68, 1956-1971.

23 Weighted pseudo core inverses in rings. Linear and Multilinear Algebra, 2020, 68, 2434-2447.
$0.5 \quad 12$

Douglas' + SebestyÃ©n's lemmas = a tool for solving an operator equation problem. Journal of
Mathematical Analysis and Applications, 2020, 482, 123599.

Numerical algorithms for solving discrete Lyapunov tensor equation. Journal of Computational and
Applied Mathematics, 2020, 370, 112676.

Reducible solution to a quaternion tensor equation. Frontiers of Mathematics in China, 2020, 15, 1047-1070.
0.4

12

27 A constraint system of coupled two-sided Sylvester-like quaternion tensor equations. Computational

27 and Applied Mathematics, 2020, 39, 1.

The accelerated overrelaxation splitting method for solving symmetric tensor equations.
28 Computational and Applied Mathematics, 2020, 39, 1.
$1.0 \quad 0$

> The least-squares solution with the least norm to a system of tensor equations over the quaternion
> algebra. Linear and Multilinear Algebra, 2020, , 1-21.

Arnoldi Method for Large Quaternion Right Eigenvalue Problem. Journal of Scientific Computing,
2020, 82, 1.

A System of Coupled Two-sided Sylvester-type Tensor Equations over the Quaternion Algebra.
Taiwanese Journal of Mathematics, 2020, 24, .

Modified CGLS iterative algorithm for solving the generalized Sylvester-conjugate matrix equation. Filomat, 2020, 34, 1329-1346.

An infinite family of Hadamard matrices constructed from Paley type matrices. Filomat, 2020, 34,
815-834.

Coherence measures based on coherence eigenvalue and their applications. Quantum Information Processing, 2019, 18, 1.
1.0

0

Connection of coherence measure and unitary evolutions. Quantum Information Processing, 2019, 18,
1.
1.0

0
Extending BiCG and BiCR methods to solve the Stein tensor equation. Computers and Mathematics
With Applications, 2019, 77, 3117-3127.

38 Constrained two-sided coupled Sylvester-type quaternion matrix equations. Automatica, 2019, 101, 207-213.

Applied Mathematics, 2019, 349, 93-113.

40 Iterative algorithms for solving some tensor equations. Linear and Multilinear Algebra, 2019, 67,
41 The Least Square Solution with the Least Norm to a System of Quaternion Matrix Equations. Iranian

Journal of Science and Technology, Transaction A: Science, 2018, 42, 1317-1325.

The complete equivalence canonical form of four matrices over an arbitrary division ring. Linear and
Multilinear Algebra, 2018, 66, 74-95.

43 A system of quaternary coupled Sylvester-type real quaternion matrix equations. Automatica, 2018, 87,
3.0

56

44 Equivalence on some Rotfelâ $€^{\text {TM }}$ d type theorems. Linear and Multilinear Algebra, 2018, 66, 1626-1632.
0.5

0
45 On the solutions of two systems of quaternion matrix equations. Linear and Multilinear Algebra,

$$
\begin{aligned}
& \text { Cramerâ€ } \mathrm{TM}_{\mathrm{S}} \text { rule for a system of quaternion matrix equations with applications. Applied Mathematics and } \\
& \text { Computation, } 2018,336,490-499 \text {. }
\end{aligned}
$$

Cramerâ $€^{T M}$ s rule for a system of quaternion matrix equations with applications. Applied Mathematics and Cramerấ $€^{T M}$ S rule for a system of qu
Computation, 2018, 336, 490-499. 1.4 31 0.4 3

50 A generalized HÃๆ|der type eigenvalue inequality. Linear and Multilinear Algebra, 2017, 65, 2145-2151.

[^1]1.4

34

On Hermitian Solutions of the Split Quaternion Matrix Equation $\$ \$ A X B+C X D=E \$ \$ A X B+C X D=E$.

```
A Constraint System of Generalized Sylvester Quaternion Matrix Equations. Advances in Applied
```

57 The Least Squares Hermitian (Anti)reflexive Solution with the Least Norm to Matrix Equation
Mathematical Problems in Engineering, 2017, 2017, 1-6.
58 Determinant inequalities for Hadamard product of positive definite matrices. Mathematical
Inequalities and Applications, 2017, , 537-542.

Two-sided coupled generalized Sylvester matrix equations solving using a simultaneous
decomposition for fifteen matrices. Linear Algebra and Its Applications, 2016, 496, 549-593.
0.4
63 The consistency and the exact solutions to a system of matrix equations. Linear and Multilinear Algebra, 2016, 64, 2133-2158.
65 L-structured quaternion matrices and quaternion linear matrix equations. Linear and Multilinear Algebra, 2016, 64, 321-339.
$0.5 \quad 17$

The $\{P, Q, k+1\}$-Reflexive Solution to System of Matrix EquationsAX $=C, X B=D$. Mathematical Problems in Engineering, 2015, 2015, 1-9.
$0.6 \quad 2$

The general solutions to some systems of matrix equations. Linear and Multilinear Algebra, 2015, 63,

The Mooreâ€"Penrose inverses of matrices over quaternion polynomial rings. Linear Algebra and Its
Solution to a system of real quaternion matrix equations encompassing $\hat{\imath} \cdot-$ Hermicity. Applied
69 Mathematics and Computation, 2015, 265, 945-957.
An Explicit Formula for the Generalized Cyclic Shuffle Map. Canadian Mathematical Bulletin, 2014, 57, 210-223.
1.4

33

$$
\begin{aligned}
& \text { Positive definite solution of a class of nonlinear matrix equation. Linear and Multilinear Algebra, } \\
& 2014,62,839-852 \text {. }
\end{aligned}
$$

The $<\mathrm{i}\rangle \hat{\imath} \cdot<\mid \mathrm{i}>$-bihermitian solution to a system of real quaternion matrix equations. Linear and Multilinear Algebra, 2014, 62, 1509-1528.

Generalized Reflexive and Generalized Antireflexive Solutions to a System of Matrix Equations.
Journal of Applied Mathematics, 2014, 2014, 1-9.

76 Systems of coupled generalized Sylvester matrix equations. Automatica, 2014, 50, 2840-2844.
3.0

60
$0.2 \quad 10$
28, 1153-1165.
On solutions of the quaternion matrix equation <mml:math
xmlns:mml="http:/|www.w3.org/1998/Math/MathML" altimg="si22.gif"
78 overflow="scroll">mml:mrow<mml:mi
mathvariant="italic">AX<|mml:mi>mml:mo=</mml:mo> mml:miB</mml:mi> </mml:mrow></mml:math>
1.4
and their applications in color image restoration. Applied Mathematics and Computation, 2013, 221,
10-20.
Linear parameterized inverse eigenvalue problem of bisymmetric matrices. Linear Algebra and Its
Applications, 2013, 439, 1990-2007.

Solvability conditions and general solution for mixed Sylvester equations. Automatica, 2013, 49,
2713-2719.

On the Hermitian structures of the solution to a pair of matrix equations. Linear and Multilinear
Algebra, 2013, 61, 73-90.

On the generalized bi (skew-) symmetric solutions of a linear matrix equation and its procrust problems. Applied Mathematics and Computation, 2013, 219, 9872-9884.

On matrices over an arbitrary semiring and their generalized inverses. Linear Algebra and lts
Applications, 2013, 439, 2085-2105.

Equality of the BLUPs under the mixed linear model when random components and errors are correlated. Journal of Multivariate Analysis, 2013, 116, 297-309.

Least-squares problem for the quaternion matrix equation $\langle\mathrm{i}\rangle \mathrm{AXB}\langle\mid \mathrm{i}\rangle+\langle\mathrm{i}\rangle \mathrm{CYD}\langle\mid \mathrm{i}\rangle=\langle\mathrm{i}\rangle \mathrm{E}<|\mathrm{i}\rangle$ over
different constrained matrices. International Journal of Computer Mathematics, 2013, 90, 565-576.

A real quaternion matrix equation with applications. Linear and Multilinear Algebra, 2013, 61, 725-740.
0.5

69

87 Iterative Solution to a System of Matrix Equations. Abstract and Applied Analysis, 2013, 2013, 1-7.
$0.3 \quad 4$

88 Linear and Nonlinear Matrix Equations. Abstract and Applied Analysis, 2013, 2013, 1-2.

On the Low-Rank Approximation Arising in the Generalized Karhunen-Loeve Transform. Abstract and
Applied Analysis, 2013, 2013, 1-8.
0.3

Completing a2 2 A $-2 B$ lock Matrix of Real Quaternions with a Partial Specified Inverse. Journal of Applied
Mathematics, 2013, 2013, 1-5.

An Efficient Algorithm for the Reflexive Solution of the Quaternion Matrix EquationAXB+CXHD=F.	0.4
Journal of Applied Mathematics, 2013, 2013, 1-14.	

95	The solvability and the exact solution of a system of real quaternion matrix equations. Banach Journal of Mathematical Analysis, 2013, 7, 208-224.	0.4	4
96	On the Hermitian<mml:math xmlns:mml="http:/\|www.w3.org/1998/Math/MathML" id="M1">mml:mrowmml:miR</mml:mi></mml:mrow></mml:math>-Conjugate Solution of a System of Matrix Equations. Journal of Applied Mathematics, 2012, 2012, 1-14.	0.4	8
97	Constrained Solutions of a System of Matrix Equations. Journal of Applied Mathematics, 2012, 2012, 1-19.	0.4	3

Perturbation Analysis for the Matrix EquationXâ^’â^ $i=1 m A i a ̂ \wedge-X A i+\hat{a}^{\wedge}{ }^{\wedge} j=1 n B j a a^{\wedge}-X B j=I$. Journal of Applied Mathematics, 2012, 2012, 1-13.
$0.4 \quad 2$

99 Some matrix equations with applicationsâ€. Linear and Multilinear Algebra, 2012, 60, 1327-1353.

0.5101 The common positive solution to adjointable operator equations with an application. Journal of
Mathematical Analysis and Applications, 2012, 396, 670-679.
101 Mathematical Analysis and Applications, 2012, 396, 670-679.
$0.5 \quad 10$
$1.4 \quad 8$0.7

109	Ranks of the common solution to six quaternion matrix equations. Acta Mathematicae Applicatae Sinica, 2011, 27, 443-462.	0.4	10	
110	Cramer rule for the unique solution of restricted matrix equations over the quaternion skew field. Computers and Mathematics With Applications, 2011, 61, 1576-1589.	1.4	36	
111	The (P,Q)-(skew)symmetric extremal rank solutions to a system of quaternion matrix equations. Applied Mathematics and Computation, 2011, 217, 9286-9296.	1.4	17	
112	On the eigenvalues of quaternion matrices. Linear and Multilinear Algebra, 2011, 59, 451-473.	0.5	37	
113	The general solution to a system of adjointable operator equations over Hilbert C^â^--modules. Operators and Matrices, 2011, , 333-350.	0.1	9	
114	The Solvability of a System of Matrix Equations over an Arbitrary Division Ring. , 2011, , .		o	
115	Common Hermitian solutions to some operator equations on Hilber <mml:math xmins:mm\|="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" 			
116	Positive solutions to a system of adjointable operator equations over Hilbert<mml:math xmlns:mml="http:/\|www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll">mml:mrowmml:msupmml:mrowmml:miC<\|mml:mi><	mml:mrow><mm Linear Algebra and Its Applications, 2010, 433, 1481-1489.		
117	(R, S)-conjugate solution to a pair of linear matrix equations. Applied Mathematics and Computation, 2010, 217, 73-82.	1.4	19	

Minimal ranks of some quaternion matrix expressions with applications. Applied Mathematics and Computation, 2010, 217, 2031-2040.

Extreme ranks of a linear quaternion matrix expression subject to triple quaternion matrix equations

The common solution to six quaternion matrix equations with applications. Applied Mathematics and

Generalized bipositive semidefinite solutions to a system of matrix equations. Journal of Shanghai
127 University, 2007, 11, 106-108.

Extremal ranks of the solution to a system of real quaternion matrix equations. Journal of Shanghai University, 2007, 11, 229-232.

The general solution to a system of real quaternion matrix equations. Computers and Mathematics With Applications, 2005, 49, 665-675.
1.4

Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations. Computers and Mathematics With Applications, 2005, 49, 641-650.
1.4

A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity.
133 A system of matrix equations and a linear matrix equat
0.4

126
0.4

84
Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra. Linear Algebra and Its Applications, 2002, 353, 169-182.

135 The reflexive re-nonnegative definite solution to a quaternion matrix equation. Electronic Journal of Linear Algebra, 0, 17,

On solutions to the quaternion matrix equation $\mathrm{AXB}+\mathrm{CYD}=\mathrm{E}$. Electronic Journal of Linear Algebra, 0 , 17,
0.6

13
137 A new solvable condition for a pair of generalized Sylvester equations. Electronic Journal of Linear
Algebra, 0, 18, .0.618
Extreme ranks of (skew-)Hermitian solutions to a quaternion matrix equation. Electronic Journal of

Two special kinds of least squares solutions for the quaternion matrix equation $\mathrm{AXB}+\mathrm{CXD}=\mathrm{E}$. Electronic Journal of Linear Algebra, 0, 23, .

Gradient based iterative methods for solving symmetric tensor equations. Numerical Linear Algebra

[^0]: Source: https:/|exaly.com/author-pdf/2631163/publications.pdf
 Version: 2024-02-01

[^1]: Simultaneous decomposition of quaternion matrices involving $\hat{l}-$-Hermicity with applications. Applied Mathematics and Computation, 2017, 298, 13-35.

