Qing-Wen Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2631163/publications.pdf

Version: 2024-02-01

172207 243296 2,640 141 29 44 citations g-index h-index papers 143 143 143 313 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	On the solutions of a class of tensor equations. Linear and Multilinear Algebra, 2022, 70, 6141-6154.	0.5	1
2	Quaternion Matrix Optimization: Motivation and Analysis. Journal of Optimization Theory and Applications, 2022, 193, 621-648.	0.8	20
3	On RGI Algorithms for Solving Sylvester Tensor Equations. Taiwanese Journal of Mathematics, 2022, 26, .	0.2	4
4	An Exact Solution to a Quaternion Matrix Equation with an Application. Symmetry, 2022, 14, 375.	1,1	25
5	Three Symmetrical Systems of Coupled Sylvester-like Quaternion Matrix Equations. Symmetry, 2022, 14, 550.	1.1	23
6	The common solution of twelve matrix equations over the quaternions. Filomat, 2022, 36, 887-903.	0.2	1
7	A constrained system of matrix equations. Computational and Applied Mathematics, 2022, 41, 1.	1.0	11
8	Solving a System of Sylvester-like Quaternion Matrix Equations. Symmetry, 2022, 14, 1056.	1,1	11
9	A Modified Conjugate Residual Method and Nearest Kronecker Product Preconditioner for the Generalized Coupled Sylvester Tensor Equations. Mathematics, 2022, 10, 1730.	1.1	9
10	A Sylvester-Type Matrix Equation over the Hamilton Quaternions with an Application. Mathematics, 2022, 10, 1758.	1.1	11
11	The Minimum-Norm Least Squares Solutions to Quaternion Tensor Systems. Symmetry, 2022, 14, 1460.	1.1	5
12	Numerical method for the generalized nonnegative tensor factorization problem. Numerical Algorithms, 2021, 87, 499-510.	1.1	0
13	More Generalizations of Hartfiel's Inequality and the Brunn–Minkowski Inequality. Bulletin of the Iranian Mathematical Society, 2021, 47, 21-29.	0.4	3
14	Least squares solution of the quaternion Sylvester tensor equation. Linear and Multilinear Algebra, 2021, 69, 104-130.	0.5	17
15	Hermitian and skew-Hermitian splitting methods for solving a tensor equation. International Journal of Computer Mathematics, 2021, 98, 1274-1290.	1.0	4
16	Algebraic conditions for the solvability to some systems of matrix equations. Linear and Multilinear Algebra, 2021, 69, 1579-1609.	0.5	10
17	Quantum coherence measures based on Fisher information with applications. Physical Review A, 2021, 103, .	1.0	16
18	An efficient algorithm for solving the nonnegative tensor least squares problem. Numerical Linear Algebra With Applications, 2021, 28, e2385.	0.9	1

#	Article	IF	CITATIONS
19	Weighted Moore-Penrose Inverses and Weighted Core Inverses in Rings with Involution. Chinese Annals of Mathematics Series B, 2021, 42, 613-624.	0.2	3
20	Developing iterative algorithms to solve Sylvester tensor equations. Applied Mathematics and Computation, 2021, 409, 126403.	1.4	10
21	Explicit solutions of the Yang-Baxter-like matrix equation for a singular diagonalizable matrix with three distinct eigenvalues. Filomat, 2021, 35, 3971-3982.	0.2	5
22	The extreme points of certain polytopes of doubly substochastic matrices. Linear and Multilinear Algebra, 2020, 68, 1956-1971.	0.5	5
23	Weighted pseudo core inverses in rings. Linear and Multilinear Algebra, 2020, 68, 2434-2447.	0.5	12
24	Douglas' + Sebesty $\tilde{\mathbb{A}}$ \mathbb{Q} n's lemmas = a tool for solving an operator equation problem. Journal of Mathematical Analysis and Applications, 2020, 482, 123599.	0.5	7
25	Numerical algorithms for solving discrete Lyapunov tensor equation. Journal of Computational and Applied Mathematics, 2020, 370, 112676.	1.1	15
26	Reducible solution to a quaternion tensor equation. Frontiers of Mathematics in China, 2020, 15, 1047-1070.	0.4	12
27	A constraint system of coupled two-sided Sylvester-like quaternion tensor equations. Computational and Applied Mathematics, 2020, 39, 1.	1.0	4
28	The accelerated overrelaxation splitting method for solving symmetric tensor equations. Computational and Applied Mathematics, 2020, 39, $1.$	1.0	0
29	The least-squares solution with the least norm to a system of tensor equations over the quaternion algebra. Linear and Multilinear Algebra, 2020, , 1-21.	0.5	12
30	Arnoldi Method for Large Quaternion Right Eigenvalue Problem. Journal of Scientific Computing, 2020, 82, 1.	1.1	10
31	A System of Coupled Two-sided Sylvester-type Tensor Equations over the Quaternion Algebra. Taiwanese Journal of Mathematics, 2020, 24, .	0.2	6
32	Modified CGLS iterative algorithm for solving the generalized Sylvester-conjugate matrix equation. Filomat, 2020, 34, 1329-1346.	0.2	2
33	An infinite family of Hadamard matrices constructed from Paley type matrices. Filomat, 2020, 34, 815-834.	0.2	0
34	Coherence measures based on coherence eigenvalue and their applications. Quantum Information Processing, 2019, 18, 1.	1.0	0
35	Connection of coherence measure and unitary evolutions. Quantum Information Processing, 2019, 18, 1.	1.0	0
36	Computing the Maximal Violation of Bell Inequalities for Multipartite Qubit via Partially Symmetric Tensor. International Journal of Theoretical Physics, 2019, 58, 1161-1171.	0.5	0

#	Article	IF	CITATIONS
37	Extending BiCG and BiCR methods to solve the Stein tensor equation. Computers and Mathematics With Applications, 2019, 77, 3117-3127.	1.4	26
38	Constrained two-sided coupled Sylvester-type quaternion matrix equations. Automatica, 2019, 101, 207-213.	3.0	50
39	A simultaneous decomposition for seven matrices with applications. Journal of Computational and Applied Mathematics, 2019, 349, 93-113.	1.1	31
40	Iterative algorithms for solving some tensor equations. Linear and Multilinear Algebra, 2019, 67, 1325-1349.	0.5	38
41	The Least Square Solution with the Least Norm to a System of Quaternion Matrix Equations. Iranian Journal of Science and Technology, Transaction A: Science, 2018, 42, 1317-1325.	0.7	10
42	The complete equivalence canonical form of four matrices over an arbitrary division ring. Linear and Multilinear Algebra, 2018, 66, 74-95.	0.5	11
43	A system of quaternary coupled Sylvester-type real quaternion matrix equations. Automatica, 2018, 87, 25-31.	3.0	56
44	Equivalence on some Rotfel'd type theorems. Linear and Multilinear Algebra, 2018, 66, 1626-1632.	0.5	0
45	On the solutions of two systems of quaternion matrix equations. Linear and Multilinear Algebra, 2018, 66, 2355-2388.	0.5	5
46	Extensions of pseudo-Perron-Frobenius splitting related to generalized inverse AT,S (2). Special Matrices, 2018, 6, 46-55.	0.2	0
47	Cramer's rule for a system of quaternion matrix equations with applications. Applied Mathematics and Computation, 2018, 336, 490-499.	1.4	31
48	More Inequalities for Sector Matrices. Bulletin of the Iranian Mathematical Society, 2018, 44, 1059-1066.	0.4	3
49	Uncertainty Relation on Generalized Skew Information with aMonotone Pair. International Journal of Theoretical Physics, 2017, 56, 2423-2432.	0.5	0
50	A generalized Hölder type eigenvalue inequality. Linear and Multilinear Algebra, 2017, 65, 2145-2151.	0.5	2
51	Simultaneous decomposition of quaternion matrices involving Î-Hermicity with applications. Applied Mathematics and Computation, 2017, 298, 13-35.	1.4	34
52	On Hermitian Solutions of the Split Quaternion Matrix Equation $\$AXB+CXD=E\$$ A X B + C X D = E. Advances in Applied Clifford Algebras, 2017, 27, 3235-3252.	0.5	27
53	A Constraint System of Generalized Sylvester Quaternion Matrix Equations. Advances in Applied Clifford Algebras, 2017, 27, 3183-3196.	0.5	22
54	Quantum-memory-assisted entropic uncertainty relations under weak measurements. Quantum Information Processing, 2017, 16, 1.	1.0	5

#	Article	IF	Citations
55	A note on Rotfel'd Theorem in a sector. Linear and Multilinear Algebra, 2017, 65, 1655-1661.	0.5	1
56	Inequalities on generalized matrix functions. Linear and Multilinear Algebra, 2017, 65, 1947-1961.	0.5	1
57	The Least Squares Hermitian (Anti)reflexive Solution with the Least Norm to Matrix Equation AXB=C. Mathematical Problems in Engineering, 2017, 2017, 1-6.	0.6	1
58	Determinant inequalities for Hadamard product of positive definite matrices. Mathematical Inequalities and Applications, 2017, , 537-542.	0.1	3
59	On Hayajneh and Kittaneh's conjecture on unitarily invariant norm. Journal of Mathematical Inequalities, 2017, , 1019-1022.	0.5	0
60	Measurement-induced nonlocality based on Wigner-Yanase skew information. Europhysics Letters, 2016, 114, 10007.	0.7	32
61	Constraint generalized Sylvester matrix equations. Automatica, 2016, 69, 60-64.	3.0	49
62	Two-sided coupled generalized Sylvester matrix equations solving using a simultaneous decomposition for fifteen matrices. Linear Algebra and Its Applications, 2016, 496, 549-593.	0.4	45
63	The consistency and the exact solutions to a system of matrix equations. Linear and Multilinear Algebra, 2016, 64, 2133-2158.	0.5	7
64	Geometric measure of quantum discord with weak measurements. Quantum Information Processing, 2016, 15, 291-300.	1.0	8
65	L-structured quaternion matrices and quaternion linear matrix equations. Linear and Multilinear Algebra, 2016, 64, 321-339.	0.5	17
66	The {P,Q,k+1}-Reflexive Solution to System of Matrix Equations AX=C, XB=D. Mathematical Problems in Engineering, 2015, 2015, 1-9.	0.6	2
67	The general solutions to some systems of matrix equations. Linear and Multilinear Algebra, 2015, 63, 2017-2032.	0.5	39
68	The Moore–Penrose inverses of matrices over quaternion polynomial rings. Linear Algebra and Its Applications, 2015, 475, 45-61.	0.4	9
69	Solution to a system of real quaternion matrix equations encompassing Î-Hermicity. Applied Mathematics and Computation, 2015, 265, 945-957.	1.4	33
70	An Explicit Formula for the Generalized Cyclic Shuffle Map. Canadian Mathematical Bulletin, 2014, 57, 210-223.	0.3	1
71	Algorithms for Finding the Roots of Some Quadratic Octonion Equations. Communications in Algebra, 2014, 42, 3267-3282.	0.3	2
72	(Anti-)Hermitian Generalized (Anti-)Hamiltonian Solution to a System of Matrix Equations. Mathematical Problems in Engineering, 2014, 2014, 1-13.	0.6	4

#	Article	IF	CITATIONS
73	Positive definite solution of a class of nonlinear matrix equation. Linear and Multilinear Algebra, 2014, 62, 839-852.	0.5	9
74	The $\langle i \rangle \hat{l} \cdot \langle i \rangle$ -bihermitian solution to a system of real quaternion matrix equations. Linear and Multilinear Algebra, 2014, 62, 1509-1528.	0.5	36
75	Generalized Reflexive and Generalized Antireflexive Solutions to a System of Matrix Equations. Journal of Applied Mathematics, 2014, 2014, 1-9.	0.4	1
76	Systems of coupled generalized Sylvester matrix equations. Automatica, 2014, 50, 2840-2844.	3.0	60
77	The least squares Î-Hermitian problems of quaternion matrix equation AHXA + BHYB=C. Filomat, 2014, 28, 1153-1165. On solutions of the quaternion matrix equation <mml:math< td=""><td>0.2</td><td>10</td></mml:math<>	0.2	10
78	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si22.gif" overflow="scroll"> <mml:mrow><mml:mi mathvariant="italic">AX</mml:mi><mml:mo>=</mml:mo><mml:mi>B</mml:mi></mml:mrow> and their applications in color image restoration. Applied Mathematics and Computation, 2013, 221,	1.4	39
79	10-20. Linear parameterized inverse eigenvalue problem of bisymmetric matrices. Linear Algebra and Its Applications, 2013, 439, 1990-2007.	0.4	5
80	Solvability conditions and general solution for mixed Sylvester equations. Automatica, 2013, 49, 2713-2719.	3.0	81
81	On the Hermitian structures of the solution to a pair of matrix equations. Linear and Multilinear Algebra, 2013, 61, 73-90.	0.5	8
82	On the generalized bi (skew-) symmetric solutions of a linear matrix equation and its procrust problems. Applied Mathematics and Computation, 2013, 219, 9872-9884.	1.4	16
83	On matrices over an arbitrary semiring and their generalized inverses. Linear Algebra and Its Applications, 2013, 439, 2085-2105.	0.4	2
84	Equality of the BLUPs under the mixed linear model when random components and errors are correlated. Journal of Multivariate Analysis, 2013, 116, 297-309.	0.5	10
85	Least-squares problem for the quaternion matrix equation <i>AXB</i> + <i>CYD</i> = <i>E</i> >013, 90, 565-576.	1.0	29
86	A real quaternion matrix equation with applications. Linear and Multilinear Algebra, 2013, 61, 725-740.	0.5	69
87	Iterative Solution to a System of Matrix Equations. Abstract and Applied Analysis, 2013, 2013, 1-7.	0.3	4
88	Linear and Nonlinear Matrix Equations. Abstract and Applied Analysis, 2013, 2013, 1-2.	0.3	0
89	On the Low-Rank Approximation Arising in the Generalized Karhunen-Loeve Transform. Abstract and Applied Analysis, 2013, 2013, 1-8.	0.3	3
90	Completing a2×2Block Matrix of Real Quaternions with a Partial Specified Inverse. Journal of Applied Mathematics, 2013, 2013, 1-5.	0.4	4

#	Article	IF	CITATIONS
91	An Efficient Algorithm for the Reflexive Solution of the Quaternion Matrix EquationAXB+CXHD=F. Journal of Applied Mathematics, 2013, 2013, 1-14.	0.4	1
92	The Hermitian -Conjugate Generalized Procrustes Problem. Abstract and Applied Analysis, 2013, 2013, 1-9.	0.3	1
93	iterative Algorithm for Solving a Class of Quaternion Matrix Equation over the Generalized <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo stretchy="false"> (</mml:mo> < mml:mi>P < mml:mo>, < mml:mi>QQ < mml:mo> < mml:mi>Q < mml:mo> < mml:mi>Q < mml:mo> < mml:mi>Q < mml:mo> < mml:mi> < mml:mo> < mml:mo> < mml:mi> < mml:mo> <</mml:math>	TQ q l31 0.	78 4 314 rgB <mark>T</mark>
94	The Equalities of BLUPs for Linear Combinations Under Two General Linear Mixed Models. Communications in Statistics - Theory and Methods, 2013, 42, 3528-3543.	0.6	8
95	The solvability and the exact solution of a system of real quaternion matrix equations. Banach Journal of Mathematical Analysis, 2013, 7, 208-224.	0.4	4
96	On the Hermitian <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math> -Conjugate Solution of a System of Matrix Equations. Journal of Applied Mathematics, 2012, 2012, 1-14.	0.4	8
97	Constrained Solutions of a System of Matrix Equations. Journal of Applied Mathematics, 2012, 2012, 1-19.	0.4	3
98	Perturbation Analysis for the Matrix EquationXâ^'â^'i=1mAiâ^—XAi+â^'j=1nBjâ^—XBj=l. Journal of Applied Mathematics, 2012, 2012, 1-13.	0.4	2
99	Some matrix equations with applicationsâ€. Linear and Multilinear Algebra, 2012, 60, 1327-1353.	0.5	45
100	Solutions to optimization problems on ranks and inertias of a matrix function with applications. Applied Mathematics and Computation, 2012, 219, 2989-3001.	1.4	8
101	The common positive solution to adjointable operator equations with an application. Journal of Mathematical Analysis and Applications, 2012, 396, 670-679.	0.5	10
102	Inertias and ranks of some Hermitian matrix functions with applications. Central European Journal of Mathematics, 2012, 10, 329-351.	0.7	13
103	A New Simultaneous Decomposition of a Matrix Quaternity Over an Arbitrary Division Ring with Applications. Communications in Algebra, 2012, 40, 2309-2342.	0.3	16
104	On the Hermitian solutions to a system of adjointable operator equations. Linear Algebra and Its Applications, 2012, 437, 1854-1891.	0.4	24
105	The Drazin inverse in an arbitrary semiring. Linear and Multilinear Algebra, 2011, 59, 1019-1029.	0.5	8
106	Remarks on Hua's matrix equality involving generalized inverses. Linear and Multilinear Algebra, 2011, 59, 1059-1067.	0.5	1
107	The common bisymmetric nonnegative definite solutions with extreme ranks and inertias to a pair of matrix equations. Applied Mathematics and Computation, 2011, 218, 2761-2771.	1.4	14
108	Condensed Cramer rule for some restricted quaternion linear equations. Applied Mathematics and Computation, 2011, 218, 3110-3121.	1.4	24

#	Article	IF	Citations
109	Ranks of the common solution to six quaternion matrix equations. Acta Mathematicae Applicatae Sinica, 2011, 27, 443-462.	0.4	10
110	Cramer rule for the unique solution of restricted matrix equations over the quaternion skew field. Computers and Mathematics With Applications, 2011, 61, 1576-1589.	1.4	36
111	The (P,Q)-(skew)symmetric extremal rank solutions to a system of quaternion matrix equations. Applied Mathematics and Computation, 2011, 217, 9286-9296.	1.4	17
112	On the eigenvalues of quaternion matrices. Linear and Multilinear Algebra, 2011, 59, 451-473.	0.5	37
113	The general solution to a system of adjointable operator equations over Hilbert C^â^—-modules. Operators and Matrices, 2011, , 333-350.	0.1	9
114	The Solvability of a System of Matrix Equations over an Arbitrary Division Ring., 2011,,.		0
115	Common Hermitian solutions to some operator equations on Hilber <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msup></mml:mrow></mml:math>	ıl:Mö ⁴ >â^—	<
116	Positive solutions to a system of adjointable operator equations over Hilbert <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mro< td=""><td>nl:0.4 nl:mo>â^—</td><td><!--<del-->16 <</td></mml:mro<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msup></mml:mrow></mml:math>	nl:0.4 nl:mo>â^—	<del 16 <
117	(R,S)-conjugate solution to a pair of linear matrix equations. Applied Mathematics and Computation, 2010, 217, 73-82.	1.4	19
118	Minimal ranks of some quaternion matrix expressions with applications. Applied Mathematics and Computation, 2010, 217, 2031-2040.	1.4	9
119	Ranks and the least-norm of the general solution to a system of quaternion matrix equations. Linear Algebra and Its Applications, 2009, 430, 1626-1640.	0.4	132
120	A system of real quaternion matrix equations with applications. Linear Algebra and Its Applications, 2009, 431, 2291-2303.	0.4	108
121	The Real Solutions to a System of Quaternion Matrix Equations with Applications. Communications in Algebra, 2009, 37, 2060-2079.	0.3	19
122	Extreme ranks of a linear quaternion matrix expression subject to triple quaternion matrix equations with applications. Applied Mathematics and Computation, 2008, 195, 733-744.	1.4	34
123	P-(skew)symmetric common solutions to a pair of quaternion matrix equations. Applied Mathematics and Computation, 2008, 195, 721-732.	1.4	41
124	The common solution to six quaternion matrix equations with applications. Applied Mathematics and Computation, 2008, 198, 209-226.	1.4	52
125	Rank equalities related to the generalized inverse with applications. Applied Mathematics and Computation, 2008, 205, 370-382.	1.4	7
126	Extreme ranks of the solution to a consistent system of linear quaternion matrix equations with an application. Applied Mathematics and Computation, 2007, 189, 1517-1532.	1.4	32

#	Article	IF	CITATIONS
127	Generalized bipositive semidefinite solutions to a system of matrix equations. Journal of Shanghai University, 2007, 11, 106-108.	0.1	0
128	Extremal ranks of the solution to a system of real quaternion matrix equations. Journal of Shanghai University, 2007, 11, 229-232.	0.1	1
129	Reflexive solution to a system of matrix equations. Journal of Shanghai University, 2007, 11, 355-358.	0.1	8
130	Extremal ranks of a quaternion matrix expression subject to consistent systems of quaternion matrix equations with applications. Applied Mathematics and Computation, 2006, 182, 1755-1764.	1.4	43
131	The general solution to a system of real quaternion matrix equations. Computers and Mathematics With Applications, 2005, 49, 665-675.	1.4	101
132	Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations. Computers and Mathematics With Applications, 2005, 49, 641-650.	1.4	112
133	A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity. Linear Algebra and Its Applications, 2004, 384, 43-54.	0.4	126
134	Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra. Linear Algebra and Its Applications, 2002, 353, 169-182.	0.4	84
135	The reflexive re-nonnegative definite solution to a quaternion matrix equation. Electronic Journal of Linear Algebra, $0,17,.$	0.6	11
136	On solutions to the quaternion matrix equation AXB+CYD=E. Electronic Journal of Linear Algebra, 0, 17, .	0.6	13
137	A new solvable condition for a pair of generalized Sylvester equations. Electronic Journal of Linear Algebra, 0, 18, .	0.6	18
138	Extreme ranks of (skew-)Hermitian solutions to a quaternion matrix equation. Electronic Journal of Linear Algebra, 0, 20, .	0.6	19
139	Two special kinds of least squares solutions for the quaternion matrix equation AXB+CXD=E. Electronic Journal of Linear Algebra, 0, 23, .	0.6	28
140	Gradient based iterative methods for solving symmetric tensor equations. Numerical Linear Algebra With Applications, 0, , e2414.	0.9	5
141	Suitable elements, -clean elements and Sylvester equations in rings with involution. Communications in Algebra, 0, , 1-9.	0.3	1