Leighann Sherry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2630737/publications.pdf

Version: 2024-02-01

201575 360920 2,413 35 27 35 citations h-index g-index papers 36 36 36 3025 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fungal Biofilm Resistance. International Journal of Microbiology, 2012, 2012, 1-14.	0.9	403
2	Biofilm-Forming Capability of Highly Virulent, Multidrug-Resistant <i>Candida auris</i> Infectious Diseases, 2017, 23, 328-331.	2.0	296
3	Biofilm formation is a risk factor for mortality in patients with Candida albicans bloodstream infectionâ€"Scotland, 2012â€"2013. Clinical Microbiology and Infection, 2016, 22, 87-93.	2.8	188
4	Transcriptome Assembly and Profiling of <i>Candida auris</i> Reveals Novel Insights into Biofilm-Mediated Resistance. MSphere, 2018, 3, .	1.3	151
5	Biofilms formed by Candida albicans bloodstream isolates display phenotypic and transcriptional heterogeneity that are associated with resistance and pathogenicity. BMC Microbiology, 2014, 14, 182.	1.3	124
6	Utilising polyphenols for the clinical management of Candida albicans biofilms. International Journal of Antimicrobial Agents, 2014, 44, 269-273.	1.1	86
7	Surface disinfection challenges for Candida auris: an in-vitro study. Journal of Hospital Infection, 2018, 98, 433-436.	1.4	84
8	Polymicrobial <i>Candida</i> biofilms: friends and foe in the oral cavity. FEMS Yeast Research, 2015, 15, fov077.	1.1	76
9	Development of an in vitroperiodontal biofilm model for assessing antimicrobial and host modulatory effects of bioactive molecules. BMC Oral Health, 2014, 14, 80.	0.8	68
10	The comparative efficacy of antiseptics against Candida auris biofilms. International Journal of Antimicrobial Agents, 2018, 52, 673-677.	1.1	67
11	Biofilms Formed by Isolates from Recurrent Vulvovaginal Candidiasis Patients Are Heterogeneous and Insensitive to Fluconazole. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	66
12	Antifungal, Cytotoxic, and Immunomodulatory Properties of Tea Tree Oil and Its Derivative Components: Potential Role in Management of Oral Candidosis in Cancer Patients. Frontiers in Microbiology, 2012, 3, 220.	1.5	65
13	A Prospective Surveillance Study of Candidaemia: Epidemiology, Risk Factors, Antifungal Treatment and Outcome in Hospitalized Patients. Frontiers in Microbiology, 2016, 7, 915.	1.5	60
14	Candida auris exhibits resilient biofilm characteristics inÂvitro: implications for environmental persistence. Journal of Hospital Infection, 2019, 103, 92-96.	1.4	59
15	Extracellular DNA release confers heterogeneity in Candida albicans biofilm formation. BMC Microbiology, 2014, 14, 303.	1.3	53
16	Liposomal Amphotericin B Displays Rapid Dose-Dependent Activity against Candida albicans Biofilms. Antimicrobial Agents and Chemotherapy, 2013, 57, 2369-2371.	1.4	49
17	Viable Compositional Analysis of an Eleven Species Oral Polymicrobial Biofilm. Frontiers in Microbiology, 2016, 7, 912.	1.5	47
18	In Vitro Candida albicans Biofilm Induced Proteinase Activity and SAP8 Expression Correlates with In Vivo Denture Stomatitis Severity. Mycopathologia, 2012, 174, 11-19.	1.3	46

#	Article	IF	Citations
19	Tolerance of Pseudomonas aeruginosa in in-vitro biofilms to high-level peracetic acid disinfection. Journal of Hospital Infection, 2017, 97, 162-168.	1.4	42
20	Integrating Candida albicans metabolism with biofilm heterogeneity by transcriptome mapping. Scientific Reports, 2016, 6, 35436.	1.6	39
21	Gaining Insights from Candida Biofilm Heterogeneity: One Size Does Not Fit All. Journal of Fungi (Basel, Switzerland), 2018, 4, 12.	1.5	36
22	Carbohydrate Derived Fulvic Acid: An in vitro Investigation of a Novel Membrane Active Antiseptic Agent Against Candida albicans Biofilms. Frontiers in Microbiology, 2012, 3, 116.	1.5	35
23	Investigating the biological properties of carbohydrate derived fulvic acid (CHD-FA) as a potential novel therapy for the management of oral biofilm infections. BMC Oral Health, 2013, 13, 47.	0.8	35
24	Recurrent Vulvovaginal Candidiasis: a Dynamic Interkingdom Biofilm Disease of <i>Candida</i> and <i>Lactobacillus</i> MSystems, 2021, 6, e0062221.	1.7	35
25	Development and characterisation of a novel three-dimensional inter-kingdom wound biofilm model. Biofouling, 2016, 32, 1259-1270.	0.8	34
26	A Comparative In Vitro Study of Two Denture Cleaning Techniques as an Effective Strategy for Inhibiting $\langle i \rangle$ Candida albicans $\langle i \rangle$ Biofilms on Denture Surfaces and Reducing Inflammation. Journal of Prosthodontics, 2012, 21, 516-522.	1.7	31
27	Implications of Antimicrobial Combinations in Complex Wound Biofilms Containing Fungi. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	31
28	New strategic insights into managing fungal biofilms. Frontiers in Microbiology, 2015, 6, 1077.	1.5	28
29	Candida albicans biofilm heterogeneity does not influence denture stomatitis but strongly influences denture cleansing capacity. Journal of Medical Microbiology, 2017, 66, 54-60.	0.7	22
30	Impact of frequency of denture cleaning on microbial and clinical parameters – a bench to chairside approach. Journal of Oral Microbiology, 2019, 11, 1538437.	1.2	20
31	Interkingdom interactions on the denture surface: Implications for oral hygiene. Biofilm, 2019, 1, 100002.	1.5	15
32	In Vitro Effect of Porphyromonas gingivalis Methionine Gamma Lyase on Biofilm Composition and Oral Inflammatory Response. PLoS ONE, 2016, 11, e0169157.	1.1	10
33	Candida albicansFungaemia following Traumatic Urethral Catheterisation in a Paraplegic Patient with Diabetes Mellitus and Candiduria Treated by Caspofungin. Case Reports in Infectious Diseases, 2013, 2013, 1-6.	0.2	6
34	The application of phenotypic microarray analysis to anti-fungal drug development. Journal of Microbiological Methods, 2017, 134, 35-37.	0.7	3
35	Cell Viability Assays for Candida auris. Methods in Molecular Biology, 2022, , 129-153.	0.4	3