Daoxin Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2630661/publications.pdf

Version: 2024-02-01

48187 31902 11,424 91 53 88 citations h-index g-index papers 91 91 91 10533 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	The Jasmonate-ZIM-Domain Proteins Interact with the WD-Repeat/bHLH/MYB Complexes to Regulate Jasmonate-Mediated Anthocyanin Accumulation and Trichome Initiation in <i>Arabidopsis thaliana</i> ÂÂ. Plant Cell, 2011, 23, 1795-1814.	3.1	743
2	The <i>Arabidopsis</i> CORONATINE INSENSITIVE1 Protein Is a Jasmonate Receptor Â. Plant Cell, 2009, 21, 2220-2236.	3.1	660
3	The SCFCOI1 Ubiquitin-Ligase Complexes Are Required for Jasmonate Response in Arabidopsis. Plant Cell, 2002, 14, 1919-1935.	3.1	600
4	The Jasmonate-ZIM Domain Proteins Interact with the R2R3-MYB Transcription Factors MYB21 and MYB24 to Affect Jasmonate-Regulated Stamen Development in <i>Arabidopsis</i> \hat{A} \hat{A} . Plant Cell, 2011, 23, 1000-1013.	3.1	502
5	Control of a key transition from prostrate to erect growth in rice domestication. Nature Genetics, 2008, 40, 1360-1364.	9.4	411
6	COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex inArabidopsis. Plant Journal, 2002, 32, 457-466.	2.8	401
7	DWARF14 is a non-canonical hormone receptor for strigolactone. Nature, 2016, 536, 469-473.	13.7	399
8	Gibberellin Acts through Jasmonate to Control the Expression of MYB21, MYB24, and MYB57 to Promote Stamen Filament Growth in Arabidopsis. PLoS Genetics, 2009, 5, e1000440.	1.5	357
9	Interaction between MYC2 and ETHYLENE INSENSITIVE3 Modulates Antagonism between Jasmonate and Ethylene Signaling in <i>Arabidopsis</i> A. Plant Cell, 2014, 26, 263-279.	3.1	309
10	Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. Journal of Experimental Botany, 2009, 60, 3849-3860.	2.4	287
11	<i>TAC1</i> , a major quantitative trait locus controlling tiller angle in rice. Plant Journal, 2007, 52, 891-898.	2.8	281
12	Genome-Wide Analysis of bZIP-Encoding Genes in Maize. DNA Research, 2012, 19, 463-476.	1.5	262
13	Regulation of Jasmonate-Induced Leaf Senescence by Antagonism between bHLH Subgroup IIIe and IIId Factors in Arabidopsis. Plant Cell, 2015, 27, 1634-1649.	3.1	247
14	The Arabidopsis Mutant sleepy1gar2-1 Protein Promotes Plant Growth by Increasing the Affinity of the SCFSLY1 E3 Ubiquitin Ligase for DELLA Protein Substrates[W]. Plant Cell, 2004, 16, 1406-1418.	3.1	244
15	The bHLH Subgroup IIId Factors Negatively Regulate Jasmonate-Mediated Plant Defense and Development. PLoS Genetics, 2013, 9, e1003653.	1.5	237
16	The bHLH Transcription Factor MYC3 Interacts with the Jasmonate ZIM-Domain Proteins to Mediate Jasmonate Response in Arabidopsis. Molecular Plant, 2011, 4, 279-288.	3.9	236
17	Regulation of Jasmonate-Mediated Stamen Development and Seed Production by a bHLH-MYB Complex in Arabidopsis. Plant Cell, 2015, 27, 1620-1633.	3.1	229
18	Viral Virulence Protein Suppresses RNA Silencing–Mediated Defense but Upregulates the Role of MicroRNA in Host Gene Expression[W]. Plant Cell, 2004, 16, 1302-1313.	3.1	220

#	Article	IF	CITATIONS
19	Origin of seed shattering in rice (Oryza sativa L.). Planta, 2007, 226, 11-20.	1.6	215
20	<i>Arabidopsis</i> DELLA and JAZ Proteins Bind the WD-Repeat/bHLH/MYB Complex to Modulate Gibberellin and Jasmonate Signaling Synergy Â. Plant Cell, 2014, 26, 1118-1133.	3.1	202
21	The COP9 Signalosome Interacts Physically with SCFCOI1 and Modulates Jasmonate Responses. Plant Cell, 2003, 15, 1083-1094.	3.1	198
22	Jasmonate signaling and crosstalk with gibberellin and ethylene. Current Opinion in Plant Biology, 2014, 21, 112-119.	3.5	191
23	Injury Activates Ca2+/Calmodulin-Dependent Phosphorylation of JAV1-JAZ8-WRKY51 Complex for Jasmonate Biosynthesis. Molecular Cell, 2018, 70, 136-149.e7.	4.5	191
24	COS1: An Arabidopsis coronatine insensitive 1 Suppressor Essential for Regulation of Jasmonate-Mediated Plant Defense and Senescence. Plant Cell, 2004, 16, 1132-1142.	3.1	163
25	The Role of Arabidopsis Rubisco Activase in Jasmonate-Induced Leaf Senescence Â. Plant Physiology, 2011, 155, 751-764.	2.3	159
26	JAV1 Controls Jasmonate-Regulated Plant Defense. Molecular Cell, 2013, 50, 504-515.	4.5	146
27	POSTAR2: deciphering the post-transcriptional regulatory logics. Nucleic Acids Research, 2019, 47, D203-D211.	6.5	145
28	Jasmonate in plant defence: sentinel or double agent?. Plant Biotechnology Journal, 2015, 13, 1233-1240.	4.1	136
29	Comparison of phytohormone signaling mechanisms. Current Opinion in Plant Biology, 2012, 15, 84-91.	3.5	135
30	Jasmonate action in plant defense against insects. Journal of Experimental Botany, 2019, 70, 3391-3400.	2.4	127
31	Arabidopsis ARGONAUTE 1 Binds Chromatin to Promote Gene Transcription in Response to Hormones and Stresses. Developmental Cell, 2018, 44, 348-361.e7.	3.1	121
32	Regulation of Stamen Development by Coordinated Actions of Jasmonate, Auxin, and Gibberellin in Arabidopsis. Molecular Plant, 2013, 6, 1065-1073.	3.9	119
33	The ASK1 and ASK2 Genes Are Essential for Arabidopsis Early Development. Plant Cell, 2004, 16, 5-20.	3.1	117
34	<i>GAD1</i> Encodes a Secreted Peptide That Regulates Grain Number, Grain Length, and Awn Development in Rice Domestication. Plant Cell, 2016, 28, 2453-2463.	3.1	115
35	Viral effector protein manipulates host hormone signaling to attract insect vectors. Cell Research, 2017, 27, 402-415.	5.7	115
36	NOG1 increases grain production in rice. Nature Communications, 2017, 8, 1497.	5.8	111

#	Article	IF	CITATIONS
37	The <i>Arabidopsis </i> F-Box Protein CORONATINE INSENSITIVE1 Is Stabilized by SCFCOI1 and Degraded via the 26S Proteasome Pathway Â. Plant Cell, 2013, 25, 486-498.	3.1	107
38	Rice functional genomics: decades' efforts and roads ahead. Science China Life Sciences, 2022, 65, 33-92.	2.3	107
39	A Leaky Mutation in <i>DWARF4</i> Reveals an Antagonistic Role of Brassinosteroid in the Inhibition of Root Growth by Jasmonate in Arabidopsis. Plant Physiology, 2009, 151, 1412-1420.	2.3	101
40	CLCuMuB \hat{I}^2 C1 Subverts Ubiquitination by Interacting with NbSKP1s to Enhance Geminivirus Infection in Nicotiana benthamiana. PLoS Pathogens, 2016, 12, e1005668.	2.1	93
41	Point mutations in Arabidopsis Cullin1 reveal its essential role in jasmonate response. Plant Journal, 2005, 42, 514-524.	2.8	88
42	<i><scp>PAY</scp>1</i> improves plant architecture and enhances grain yield in rice. Plant Journal, 2015, 83, 528-536.	2.8	87
43	Endogenous Bioactive Jasmonate Is Composed of a Set of (+)-7- <i>iso-</i> jA-Amino Acid Conjugates. Plant Physiology, 2016, 172, 2154-2164.	2.3	73
44	ShHTL7 is a non-canonical receptor for strigolactones in root parasitic weeds. Cell Research, 2017, 27, 838-841.	5.7	71
45	Regulation of Flower Development in Arabidopsis by SCF Complexes. Plant Physiology, 2004, 134, 1574-1585.	2.3	69
46	Variation in the regulatory region of <i><scp>FZP</scp></i> causes increases in secondary inflorescence branching and grain yield in rice domestication. Plant Journal, 2018, 96, 716-733.	2.8	65
47	MYC5 is Involved in Jasmonate-Regulated Plant Growth, Leaf Senescence and Defense Responses. Plant and Cell Physiology, 2017, 58, 1752-1763.	1.5	61
48	Dynamic Perception of Jasmonates by the F-Box Protein COI1. Molecular Plant, 2018, 11, 1237-1247.	3.9	61
49	The AtRbx1 Protein Is Part of Plant SCF Complexes, and Its Down-regulation Causes Severe Growth and Developmental Defects. Journal of Biological Chemistry, 2002, 277, 50069-50080.	1.6	59
50	Arabidopsis MYB24 Regulates Jasmonate-Mediated Stamen Development. Frontiers in Plant Science, 2017, 8, 1525.	1.7	59
51	An Arabidopsis mutant cex1 exhibits constant accumulation of jasmonate-regulated AtVSP, Thi2.1 and PDF1.2. FEBS Letters, 2001, 494, 161-164.	1.3	58
52	The Effect of the Crosstalk between Photoperiod and Temperature on the Heading-Date in Rice. PLoS ONE, 2009, 4, e5891.	1.1	57
53	<i><scp>TOND1</scp></i> confers tolerance to nitrogen deficiency in rice. Plant Journal, 2015, 81, 367-376.	2.8	57
54	Disruption of Fumarylacetoacetate Hydrolase Causes Spontaneous Cell Death under Short-Day Conditions in Arabidopsis. Plant Physiology, 2013, 162, 1956-1964.	2.3	51

#	Article	IF	CITATIONS
55	GmCOI1, a Soybean F-Box Protein Gene, Shows Ability to Mediate Jasmonate-Regulated Plant Defense and Fertility in Arabidopsis. Molecular Plant-Microbe Interactions, 2005, 18, 1285-1295.	1.4	50
56	TH1, a DUF640 domain-like gene controls lemma and palea development in rice. Plant Molecular Biology, 2012, 78, 351-359.	2.0	50
57	Identification and expression profile analysis of the protein kinase gene superfamily in maize development. Molecular Breeding, 2014, 33, 155-172.	1.0	43
58	Rice DWARF14 acts as an unconventional hormone receptor for strigolactone. Journal of Experimental Botany, 2018, 69, 2355-2365.	2.4	40
59	Control of seed size by jasmonate. Science China Life Sciences, 2021, 64, 1215-1226.	2.3	33
60	Molecular basis for high ligand sensitivity and selectivity of strigolactone receptors in <i>Striga</i> Plant Physiology, 2021, 185, 1411-1428.	2.3	32
61	RNA-Seq of the xylose-fermenting yeast Scheffersomyces stipitis cultivated in glucose or xylose. Applied Microbiology and Biotechnology, 2011, 92, 1237-1249.	1.7	30
62	Recent advances in molecular basis for strigolactone action. Science China Life Sciences, 2018, 61, 277-284.	2.3	30
63	Arabidopsis ALA1 and ALA2 Mediate RNAi-Based Antiviral Immunity. Frontiers in Plant Science, 2017, 8, 422.	1.7	27
64	Brassinosteroid negatively regulates jasmonate inhibition of root growth in Arabidopsis. Plant Signaling and Behavior, 2010, 5, 140-142.	1.2	25
65	Effect of GR24 Stereoisomers on Plant Development in Arabidopsis. Molecular Plant, 2016, 9, 1432-1435.	3.9	25
66	GDP-D-mannose epimerase regulates male gametophyte development, plant growth and leaf senescence in Arabidopsis. Scientific Reports, 2017, 7, 10309.	1.6	25
67	Simple \hat{l}^2 -lactones are potent irreversible antagonists for strigolactone receptors. Cell Research, 2017, 27, 1525-1528.	5.7	24
68	The genuine ligand of a jasmonic acid receptor. Plant Signaling and Behavior, 2010, 5, 337-340.	1.2	23
69	Jasmonate Signal Pathway in Arabidopsis. Journal of Integrative Plant Biology, 2007, 49, 81-86.	4.1	21
70	Characterization of a novel high-tillering dwarf 3 mutant in rice. Journal of Genetics and Genomics, 2011, 38, 411-418.	1.7	21
71	Evolution and adaptation of hemagglutinin gene of human H5N1 influenza virus. Virus Genes, 2012, 44, 450-458.	0.7	21
72	The DELLA proteins interact with MYB21 and MYB24 to regulate filament elongation in Arabidopsis. BMC Plant Biology, 2020, 20, 64.	1.6	21

#	Article	IF	CITATIONS
73	Amino acid substitutions of GLY98, LEU245 and GLU543 in COI1 distinctively affect jasmonate-regulated male fertility in Arabidopsis. Science China Life Sciences, 2014, 57, 145-154.	2.3	20
74	Arabidopsis ENOR3 regulates RNAi-mediated antiviral defense. Journal of Genetics and Genomics, 2018, 45, 33-40.	1.7	20
75	Irreversible strigolactone recognition: a non-canonical mechanism for hormone perception. Current Opinion in Plant Biology, 2018, 45, 155-161.	3.5	20
76	Light promotes jasmonate biosynthesis to regulate photomorphogenesis in Arabidopsis. Science China Life Sciences, 2020, 63, 943-952.	2.3	20
77	Global Analysis of Nonâ€coding Small RNAs in <i>Arabidopsis</i> in Response to Jasmonate Treatment by Deep Sequencing Technology. Journal of Integrative Plant Biology, 2012, 54, 73-86.	4.1	18
78	Proteomics Study of COI1â€regulated Proteins in <i>Arabidopsis</i> Flower. Journal of Integrative Plant Biology, 2010, 52, 410-419.	4.1	17
79	Multiple-strategy analyses of ZmWRKY subgroups and functional exploration of ZmWRKY genes in pathogen responses. Molecular BioSystems, 2012, 8, 1940.	2.9	17
80	Genome-scale evolution and phylodynamics of H5N1 influenza virus in China during 1996–2012. Veterinary Microbiology, 2013, 167, 383-393.	0.8	16
81	Efficient <scp>ASK</scp> â€essisted system for expression and purification of plant Fâ€box proteins. Plant Journal, 2017, 92, 736-743.	2.8	15
82	Jasmonates. , 2017, , 243-272.		15
83	Isoleucine Enhances Plant Resistance Against Botrytis cinerea via Jasmonate Signaling Pathway. Frontiers in Plant Science, 2021, 12, 628328.	1.7	14
84	Design and synthesis of biotin-tagged photoaffinity probes of jasmonates. Bioorganic and Medicinal Chemistry, 2010, 18, 3012-3019.	1.4	8
85	Strigolactone mimic 2â€nitrodebranone is highly active in Arabidopsis growth and development. Plant Journal, 2021, 107, 67-76.	2.8	8
86	HbCOI1 perceives jasmonate to trigger signal transduction in <i>Hevea brasiliensis</i> . Tree Physiology, 2021, 41, 460-471.	1.4	7
87	Argonaute protein as a linker to command center of physiological processes. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2013, 25, 430-41.	0.7	6
88	Modified Bimolecular Fluorescence Complementation Assay to Study the Inhibition of Transcription Complex Formation by JAZ Proteins. Methods in Molecular Biology, 2013, 1011, 187-197.	0.4	4
89	Metagenomic DNA Extraction of Natural Cellulose-Degrading Consortia. Bioenergy Research, 2018, 11, 115-122.	2.2	3
90	Global gene expression analysis of a rice high-tillering dwarf mutant. Genes and Genomics, 2014, 36, 485-496.	0.5	0

#	Article	IF	CITATIONS
91	Arabidopsis EED1 encoding a plant-specific nuclear protein is essential for early embryogenesis. Journal of Genetics and Genomics, 2020, 47, 61-64.	1.7	O