MarÃ-a Sonia Freire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2630483/publications.pdf

Version: 2024-02-01

236612 233125 2,309 51 25 45 citations h-index g-index papers 52 52 52 2855 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Industrial Crops and Products, 2008, 28, 279-285.	2.5	275
2	Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Industrial Crops and Products, 2013, 42, 126-132.	2.5	237
3	Adsorption of an anionic dye (Congo red) from aqueous solutions by pine bark. Scientific Reports, 2019, 9, 16530.	1.6	178
4	Removal of cadmium and mercury ions from aqueous solution by sorption on treated Pinus pinaster bark: kinetics and isotherms. Bioresource Technology, 2002, 82, 247-251.	4.8	156
5	Chestnut shell as heavy metal adsorbent: Optimization study of lead, copper and zinc cations removal. Journal of Hazardous Materials, 2009, 172, 1402-1414.	6.5	117
6	Evaluation of potential applications for chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus) Tj ETQq0 0	0 rgBT /O\	verlock 10 Tf 5
7	Effect of chemical modification of lignin on the gluebond performance of lignin-phenolic resins. Bioresource Technology, 1997, 60, 191-198.	4.8	111
8	FTIR, ¹ H and ¹³ C NMR Characterization of Acetosolv-Solubilized Pine and Eucalyptus Lignins. Holzforschung, 1997, 51, 158-166.	0.9	78
9	Alkaline pre-treatment of waste chestnut shell from a food industry to enhance cadmium, copper, lead and zinc ions removal. Chemical Engineering Journal, 2012, 184, 147-155.	6.6	71
10	Uptake of phenol from aqueous solutions by adsorption in a Pinus pinaster bark packed bed. Journal of Hazardous Materials, 2006, 133, 61-67.	6.5	69
11	Response surface optimization of antioxidants extraction from chestnut (Castanea sativa) bur. Industrial Crops and Products, 2012, 35, 126-134.	2.5	64
12	Adsorption of phenol on formaldehyde-pretreated Pinus pinaster bark: Equilibrium and kinetics. Bioresource Technology, 2007, 98, 1535-1540.	4.8	60
13	Extraction of antioxidants from eucalyptus (Eucalyptus globulus) bark. Wood Science and Technology, 2012, 46, 443-457.	1.4	58
14	Characteristics of Pinus pinaster bark extracts obtained under various extraction conditions. European Journal of Wood and Wood Products, 2001, 59, 451-456.	1.3	55
15	Effect of the Extraction Technique and Operational Conditions on the Recovery of Bioactive Compounds from Chestnut (<i>Castanea sativa</i>) Bur and Shell. Separation Science and Technology, 2014, 49, 267-277.	1.3	50
16	Acetosolv pulping of pine wood. Kinetic modelling of lignin solubilization and condensation. Bioresource Technology, 1997, 59, 121-127.	4.8	46
17	Environmentally friendly wood adhesives based on chestnut (Castanea sativa) shell tannins. European Journal of Wood and Wood Products, 2017, 75, 89-100.	1.3	46
18	Acetosolv pine lignin as copolymer in resins for manufacture of exterior grade plywoods. Bioresource Technology, 1999, 70, 209-214.	4.8	45

#	Article	IF	CITATIONS
19	The Influence of Pulping Conditions on the Structure of Acetosolv Eucalyptus Lignins. Journal of Wood Chemistry and Technology, 1997, 17, 147-162.	0.9	43
20	Structures, and Reactivities with Formaldehyde, of Some Acetosolv Pine Lignins. Journal of Wood Chemistry and Technology, 1999, 19, 357-378.	0.9	38
21	MALDI-TOF, HPLC-ESI-TOF and 13C-NMR characterization of chestnut (Castanea sativa) shell tannins for wood adhesives. Wood Science and Technology, 2013, 47, 523-535.	1.4	35
22	Effect of the extraction technique on the recovery of bioactive compounds from eucalyptus (Eucalyptus globulus) wood industrial wastes. Industrial Crops and Products, 2015, 64, 105-113.	2.5	35
23	Equilibrium and kinetic modelling of the adsorption of Cd2+ ions onto chestnut shell. Desalination, 2009, 249, 855-860.	4.0	34
24	Curing Kinetics Of Tannin-Phenol-Formal- dehyde Adhesives As Determined By DSC. Magyar Apróvad KözlemÃ@nyek, 2002, 70, 19-28.	1.4	31
25	DSC and DMA study of chestnut shell tannins for their application as wood adhesives without formaldehyde emission. Journal of Thermal Analysis and Calorimetry, 2012, 108, 605-611.	2.0	27
26	Aqueous twoâ€phase systems for the extraction of phenolic compounds from eucalyptus (<i>Eucalyptus) Tj ETQ 1772-1778.</i>	1.6 q0 0 rgE	BT /Overlock 1 24
27	Antioxidant activity of phenolic extracts from chestnut fruit and forest industries residues. European Journal of Wood and Wood Products, 2015, 73, 651-659.	1.3	24
28	Characterization of Pinus pinaster bark and its alkaline extracts by diffuse reflectance Fourier transform infrared (DRIFT) spectroscopy. European Journal of Wood and Wood Products, 2000, 58, 57-61.	1.3	20
29	Optimisation of Polyphenols Extraction from Chestnut Shell by Response Surface Methodology. Waste and Biomass Valorization, 2010, 1, 219-225.	1.8	20
30	The influence of acetosolv pulping conditions on the enzymatic hydrolysis of Eucalyptus pulps. Wood Science and Technology, 2000, 34, 345-354.	1.4	15
31	Valorization of residual walnut biomass from forest management and wood processing for the production of bioactive compounds. Biomass Conversion and Biorefinery, 2021, 11, 609-618.	2.9	15
32	Modeling and optimizing the solid–liquid extraction of phenolic compounds from lignocellulosic subproducts. Biomass Conversion and Biorefinery, 2019, 9, 737-747.	2.9	14
33	Potential impact on the recruitment of chemical engineering graduates due to the industrial internship. Education for Chemical Engineers, 2019, 26, 107-113.	2.8	12
34	Increasing the Greenness of Lignocellulosic Biomass Biorefining Processes by Means of Biocompatible Separation Strategies. ACS Sustainable Chemistry and Engineering, 2017, 5, 3339-3345.	3.2	11
35	Recovery of Phenolic Compounds from Eucalyptus globulus Wood Wastes using PEG/phosphate Aqueous Two-Phase Systems. Waste and Biomass Valorization, 2017, 8, 443-452.	1.8	11

Optimization of the Extraction of Bioactive Compounds from Walnut (Juglans major 209 x Juglans) Tj ETQq $0\,0\,0$ rgBT/Overlock $10\,\text{Tf}\,50\,$

#	Article	IF	Citations
37	Studies on the composition of Pinus pinaster foliage. Bioresource Technology, 1995, 51, 83-87.	4.8	9
38	Recovery of phenolic compounds from Eucalyptus wood wastes using ethanol-salt-based aqueous two-phase systems. Maderas: Ciencia Y Tecnologia, 2017, , 0-0.	0.7	7
39	Application of aqueous two phase systems based on polyethylene glycol and sodium citrate for the recovery of phenolic compounds from Eucalyptus wood. Maderas: Ciencia Y Tecnologia, 2015, , 0-0.	0.7	6
40	UV protection effects of phenolic extracts from chestnut fruit and forest industries residues. European Journal of Wood and Wood Products, 2015, 73, 731-739.	1.3	6
41	N- and S-Doped Carbons Derived from Polyacrylonitrile for Gases Separation. Sustainability, 2022, 14, 3760.	1.6	6
42	Estudio del mojado y caracterizaci \tilde{A}^3 n superficial por microscop \tilde{A} a de barrido laser confocal de chapas de madera obtenidas por desenrollo. Maderas: Ciencia Y Tecnologia, 2011, 13, 183-192.	0.7	5
43	Characterization of Eucalyptus globulus and Pinus pinaster acetosolv pulps prebleached with O 2 by FTIR and DRIFT spectroscopy. European Journal of Wood and Wood Products, 2002, 60, 25-30.	1.3	4
44	Preliminary studies on TCF bleaching of Pinus pinaster acetosolv pulps. Bioresource Technology, 2002, 81, 141-149.	4.8	4
45	Surface characterization of eucalyptus and ash wood veneers by XPS, TOF-SIMS, optic profilometry and contact angle measurements. , $2011, \ldots$		4
46	Chestnut bur extracts as antioxidants: optimization of the extraction stage., 2010,,.		4
47	Desarrollo de un Adsorbente Basado en Taninos de Corteza de Pinus pinaster. Informacion Tecnologica (discontinued), 2005, 16, .	0.1	2
48	Surface characterization of rotary-peeled eucalyptus veneers by confocal laser scanning microscopy and surface free energy and contact angle determination. WIT Transactions on Engineering Sciences, 2009, , .	0.0	0
49	Influence of pre-treatment methods on the adsorption of cadmium ions by chestnut shell. , 2010, , .		0
50	Study of the antioxidant potential of forestry biomass waste. WIT Transactions on Ecology and the Environment, $2012, \ldots$	0.0	0
51	SOLUBILIZATION OF PINUS PINASTER WOOD BY ACETIC ACID. , 1996, , 1482-1486.		0