
Xiao-Quan Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2630413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pickering Emulsion Gels Prepared by Hydrogen-Bonded Zein/Tannic Acid Complex Colloidal Particles. Journal of Agricultural and Food Chemistry, 2015, 63, 7405-7414.	2.4	311
2	Fabrication and Characterization of Antioxidant Pickering Emulsions Stabilized by Zein/Chitosan Complex Particles (ZCPs). Journal of Agricultural and Food Chemistry, 2015, 63, 2514-2524.	2.4	238
3	Fabrication and characterization of novel Pickering emulsions and Pickering high internal emulsions stabilized by gliadin colloidal particles. Food Hydrocolloids, 2016, 61, 300-310.	5.6	229
4	Adsorption and Dilatational Rheology of Heat-Treated Soy Protein at the Oil–Water Interface: Relationship to Structural Properties. Journal of Agricultural and Food Chemistry, 2012, 60, 3302-3310.	2.4	228
5	Protein-Based Pickering Emulsion and Oil Gel Prepared by Complexes of Zein Colloidal Particles and Stearate. Journal of Agricultural and Food Chemistry, 2014, 62, 2672-2678.	2.4	180
6	Functional properties and in vitro trypsin digestibility of red kidney bean (Phaseolus vulgaris L.) protein isolate: Effect of high-pressure treatment. Food Chemistry, 2008, 110, 938-945.	4.2	173
7	Wheat gluten-stabilized high internal phase emulsions as mayonnaise replacers. Food Hydrocolloids, 2018, 77, 168-175.	5.6	167
8	Fabrication and Characterization of Novel Antimicrobial Films Derived from Thymol-Loaded Zein–Sodium Caseinate (SC) Nanoparticles. Journal of Agricultural and Food Chemistry, 2012, 60, 11592-11600.	2.4	148
9	Complexation of resveratrol with soy protein and its improvement on oxidative stability of corn oil/water emulsions. Food Chemistry, 2014, 161, 324-331.	4.2	141
10	Plant protein-based delivery systems for bioactive ingredients in foods. Food and Function, 2015, 6, 2876-2889.	2.1	138
11	Development of Pickering Emulsions Stabilized by Gliadin/Proanthocyanidins Hybrid Particles (GPHPs) and the Fate of Lipid Oxidation and Digestion. Journal of Agricultural and Food Chemistry, 2018, 66, 1461-1471.	2.4	108
12	Enhanced Physical and Oxidative Stabilities of Soy Protein-Based Emulsions by Incorporation of a Water-Soluble Stevioside–Resveratrol Complex. Journal of Agricultural and Food Chemistry, 2013, 61, 4433-4440.	2.4	98
13	Contribution of Long Fibrils and Peptides to Surface and Foaming Behavior of Soy Protein Fibril System. Langmuir, 2016, 32, 8092-8101.	1.6	98
14	Colloidal complexation of zein hydrolysate with tannic acid: Constructing peptides-based nanoemulsions for alga oil delivery. Food Hydrocolloids, 2016, 54, 40-48.	5.6	94
15	Nonlinear Surface Dilatational Rheology and Foaming Behavior of Protein and Protein Fibrillar Aggregates in the Presence of Natural Surfactant. Langmuir, 2016, 32, 3679-3690.	1.6	93
16	Preparation of water-soluble antimicrobial zein nanoparticles by a modified antisolvent approach and their characterization. Journal of Food Engineering, 2013, 119, 343-352.	2.7	87
17	Zein based oil-in-glycerol emulgels enriched with Î ² -carotene as margarine alternatives. Food Chemistry, 2016, 211, 836-844.	4.2	85
18	Properties of dietary fiber from citrus obtained through alkaline hydrogen peroxide treatment and homogenization treatment. Food Chemistry, 2020, 311, 125873.	4.2	85

#	Article	IF	CITATIONS
19	Responsive Emulsion Gels with Tunable Properties Formed by Self-Assembled Nanofibrils of Natural Saponin Glycyrrhizic Acid for Oil Structuring. Journal of Agricultural and Food Chemistry, 2017, 65, 2394-2405.	2.4	83
20	Synergistic interfacial properties of soy protein–stevioside mixtures: Relationship to emulsion stability. Food Hydrocolloids, 2014, 39, 127-135.	5.6	78
21	Development and characterization of novel chitosan emulsion films via pickering emulsions incorporation approach. Food Hydrocolloids, 2016, 52, 253-264.	5.6	75
22	Thermoresponsive structured emulsions based on the fibrillar self-assembly of natural saponin glycyrrhizic acid. Food and Function, 2017, 8, 75-85.	2.1	75
23	Cellular Uptake and Intracellular Antioxidant Activity of Zein/Chitosan Nanoparticles Incorporated with Quercetin. Journal of Agricultural and Food Chemistry, 2018, 66, 12783-12793.	2.4	75
24	Food-Grade Emulsions and Emulsion Gels Prepared by Soy Protein–Pectin Complex Nanoparticles and Glycyrrhizic Acid Nanofibrils. Journal of Agricultural and Food Chemistry, 2020, 68, 1051-1063.	2.4	75
25	Protein-Based Pickering High Internal Phase Emulsions as Nutraceutical Vehicles of and the Template for Advanced Materials: A Perspective Paper. Journal of Agricultural and Food Chemistry, 2019, 67, 9719-9726.	2.4	74
26	Large amplitude oscillatory shear (LAOS) for nonlinear rheological behavior of heterogeneous emulsion gels made from natural supramolecular gelators. Food Research International, 2021, 140, 110076.	2.9	64
27	EFFECT OF HIGHâ€PRESSURE HOMOGENIZATION ON THE FUNCTIONAL PROPERTY OF PEANUT PROTEIN. Journal of Food Process Engineering, 2011, 34, 2191-2204.	1.5	63
28	Controlled volatile release of structured emulsions based on phytosterols crystallization. Food Hydrocolloids, 2016, 56, 170-179.	5.6	62
29	Phytosterol structured algae oil nanoemulsions and powders: improving antioxidant and flavor properties. Food and Function, 2016, 7, 3694-3702.	2.1	61
30	Tuning particle properties to control rheological behavior of high internal phase emulsion gels stabilized by zein/tannic acid complex particles. Food Hydrocolloids, 2019, 89, 163-170.	5.6	60
31	Structural Rearrangement of Ethanol-Denatured Soy Proteins by High Hydrostatic Pressure Treatment. Journal of Agricultural and Food Chemistry, 2011, 59, 7324-7332.	2.4	57
32	Wheat gluten based percolating emulsion gels as simple strategy for structuring liquid oil. Food Hydrocolloids, 2016, 61, 747-755.	5.6	57
33	Amphiphilic zein hydrolysate as a novel nano-delivery vehicle for curcumin. Food and Function, 2015, 6, 2636-2645.	2.1	55
34	Enzyme-assisted subcritical water extraction and characterization of soy protein from heat-denatured meal. Journal of Food Engineering, 2016, 169, 250-258.	2.7	55
35	Self-Assembled Egg Yolk Peptide Micellar Nanoparticles as a Versatile Emulsifier for Food-Grade Oil-in-Water Pickering Nanoemulsions. Journal of Agricultural and Food Chemistry, 2019, 67, 11728-11740.	2.4	55
36	Zein/tannic acid complex nanoparticlesâ€stabilised emulsion as a novel delivery system for controlled release of curcumin. International Journal of Food Science and Technology, 2017, 52, 1221-1228.	1.3	52

#	Article	IF	CITATIONS
37	Long-Lived and Thermoresponsive Emulsion Foams Stabilized by Self-Assembled Saponin Nanofibrils and Fibrillar Network. Langmuir, 2018, 34, 3971-3980.	1.6	52
38	Physicochemical characteristics and functional properties of high methoxyl pectin with different degree of esterification. Food Chemistry, 2022, 375, 131806.	4.2	52
39	Computed microtomography and mechanical property analysis of soy protein porous hydrogel prepared by homogenizing and microbial transglutaminase cross-linking. Food Hydrocolloids, 2013, 31, 220-226.	5.6	51
40	Multiple Water-in-Oil-in-Water Emulsion Gels Based on Self-Assembled Saponin Fibrillar Network for Photosensitive Cargo Protection. Journal of Agricultural and Food Chemistry, 2017, 65, 9735-9743.	2.4	47
41	Physical and tribological properties of high internal phase emulsions based on citrus fibers and corn peptides. Food Hydrocolloids, 2019, 95, 53-61.	5.6	47
42	Corn protein hydrolysate as a novel nano-vehicle: Enhanced physicochemical stability and inÂvitro bioaccessibility of vitamin D3. LWT - Food Science and Technology, 2016, 72, 510-517.	2.5	45
43	Characterization of Orange Oil Powders and Oleogels Fabricated from Emulsion Templates Stabilized Solely by a Natural Triterpene Saponin. Journal of Agricultural and Food Chemistry, 2019, 67, 2637-2646.	2.4	44
44	In Vitro Assessment of the Bioaccessibility of Fatty Acids and Tocopherol from Soybean Oil Body Emulsions Stabilized with ι-Carrageenan. Journal of Agricultural and Food Chemistry, 2012, 60, 1567-1575.	2.4	41
45	Sodium caseinate as a particulate emulsifier for making indefinitely recycled pH-responsive emulsions. Chemical Science, 2020, 11, 3797-3803.	3.7	41
46	Nanocomposites of Bacterial Cellulose Nanofibrils and Zein Nanoparticles for Food Packaging. ACS Applied Nano Materials, 2020, 3, 2899-2910.	2.4	38
47	Functional and structural properties and <i>in vitro</i> digestibility of acylated hemp (<i>Cannabis) Tj ETQq1 1 2653-2661.</i>	0.784314 1.3	rgBT /Overl 37
48	The physicochemical properties, in vitro binding capacities and in vivo hypocholesterolemic activity of soluble dietary fiber extracted from soy hulls. Food and Function, 2016, 7, 4830-4840.	2.1	37
49	Physicochemical and structural characterisation of protein isolate, globulin and albumin from soapnut seeds (Sapindus mukorossi Gaertn.). Food Chemistry, 2011, 128, 420-426.	4.2	35
50	The influence of heat treatment on acid-tolerant emulsions prepared from acid soluble soy protein and soy soluble polysaccharide complexes. Food Research International, 2016, 89, 211-218.	2.9	35
51	Hierarchical high internal phase emulsions and transparent oleogels stabilized by quillaja saponin-coated nanodroplets for color performance. Food and Function, 2017, 8, 823-831.	2.1	34
52	Tunable volatile release from organogel-emulsions based on the self-assembly of \hat{I}^2 -sitosterol and \hat{I}^3 -oryzanol. Food Chemistry, 2017, 221, 1491-1498.	4.2	34
53	One-step formation of a double Pickering emulsion <i>via</i> modulation of the oil phase composition. Food and Function, 2018, 9, 4508-4517.	2.1	34
54	Highly stable and thermo-responsive gel foams by synergistically combining glycyrrhizic acid nanofibrils and cellulose nanocrystals. Journal of Colloid and Interface Science, 2021, 587, 797-809.	5.0	34

#	Article	IF	CITATIONS
55	Phytosterolâ€based oleogels selfâ€assembled with monoglyceride for controlled volatile release. Journal of the Science of Food and Agriculture, 2018, 98, 582-589.	1.7	33
56	7S protein is more effective than total soybean protein isolate in reducing plasma cholesterol. Journal of Functional Foods, 2017, 36, 18-26.	1.6	32
57	A Natural Supramolecular Saponin Hydrogelator for Creation of Ultrastable and Thermostimulable Foodâ€Grade Foams. Advanced Materials Interfaces, 2019, 6, 1900417.	1.9	32
58	Subcritical Water Induced Complexation of Soy Protein and Rutin: Improved Interfacial Properties and Emulsion Stability. Journal of Food Science, 2016, 81, C2149-57.	1.5	31
59	Controlled Hydrophobic Biosurface of Bacterial Cellulose Nanofibers through Self-Assembly of Natural Zein Protein. ACS Biomaterials Science and Engineering, 2017, 3, 1595-1604.	2.6	31
60	pH switchable Pickering emulsion based on soy peptides functionalized calcium phosphate particles. Food Hydrocolloids, 2017, 70, 219-228.	5.6	31
61	Growth of Au nanoparticles on phosphorylated zein protein particles for use as biomimetic catalysts for cascade reactions at the oil–water interface. Chemical Science, 2021, 12, 3885-3889.	3.7	31
62	Bioavailability of quercetin in zein-based colloidal particles-stabilized Pickering emulsions investigated by the in vitro digestion coupled with Caco-2 cell monolayer model. Food Chemistry, 2021, 360, 130152.	4.2	31
63	Fabrication of a Soybean Bowman–Birk Inhibitor (BBI) Nanodelivery Carrier To Improve Bioavailability of Curcumin. Journal of Agricultural and Food Chemistry, 2017, 65, 2426-2434.	2.4	30
64	Slowing the Starch Digestion by Structural Modification through Preparing Zein/Pectin Particle Stabilized Water-in-Water Emulsion. Journal of Agricultural and Food Chemistry, 2018, 66, 4200-4207.	2.4	29
65	Pea soluble polysaccharides obtained from two enzyme-assisted extraction methods and their application as acidified milk drinks stabilizers. Food Research International, 2018, 109, 544-551.	2.9	29
66	Improvement in emulsifying properties of soy protein isolate by conjugation with maltodextrin using highâ€ŧemperature, shortâ€ŧime dryâ€heating Maillard reaction. International Journal of Food Science and Technology, 2014, 49, 460-467.	1.3	28
67	Effect of interfacial composition and crumbliness on aroma release in soy protein/sugar beet pectin mixed emulsion gels. Journal of the Science of Food and Agriculture, 2016, 96, 4449-4456.	1.7	27
68	Thermal aggregation behaviour of soy protein: characteristics of different polypeptides and subâ€units. Journal of the Science of Food and Agriculture, 2016, 96, 1121-1131.	1.7	27
69	Inactivation of Soybean Trypsin Inhibitor by Epigallocatechin Gallate: Stopped-Flow/Fluorescence, Thermodynamics, and Docking Studies. Journal of Agricultural and Food Chemistry, 2017, 65, 921-929.	2.4	27
70	Salt reduction in semi-solid food gel via inhomogeneous distribution of sodium-containing coacervate: Effect of gum arabic. Food Hydrocolloids, 2020, 109, 106102.	5.6	27
71	Acid/ethanol induced pectin gelling and its application in emulsion gel. Food Hydrocolloids, 2021, 118, 106774.	5.6	27
72	Fractionation and characterization of soluble soybean polysaccharide esterified of octenyl succinic anhydride and its effect as a stabilizer in acidified milk drinks. Food Hydrocolloids, 2018, 85, 215-221.	5.6	26

#	Article	IF	CITATIONS
73	Dry fractionation of surface abrasion for polyphenol-enriched buckwheat protein combined with hydrothermal treatment. Food Chemistry, 2019, 285, 414-422.	4.2	26
74	Emulsifying properties of high methoxyl pectins in binary systems of water-ethanol. Carbohydrate Polymers, 2020, 229, 115420.	5.1	26
75	Comparison of Flavor Volatiles and Some Functional Properties of Different Soy Protein Products. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1621-1631.	0.8	25
76	Modulation of the surface properties of protein particles by a surfactant for stabilizing foams. RSC Advances, 2016, 6, 66018-66026.	1.7	25
77	Oil–Water Interfacial-Directed Spontaneous Self-Assembly of Natural <i>Quillaja</i> Saponin for Controlling Interface Permeability in Colloidal Emulsions. Journal of Agricultural and Food Chemistry, 2020, 68, 13854-13862.	2.4	25
78	Fractionation of Soybean Globulins Using Ca ²⁺ and Mg ²⁺ : A Comparative Analysis. JAOCS, Journal of the American Oil Chemists' Society, 2009, 86, 409-417.	0.8	24
79	Zein Particle-Stabilized Water-In-Water Emulsion as a Vehicle for Hydrophilic Bioactive Compound Loading of Riboflavin. Journal of Agricultural and Food Chemistry, 2019, 67, 9926-9933.	2.4	24
80	Prevention of retinoic acidâ€induced osteoporosis in mice by isoflavoneâ€enriched soy protein. Journal of the Science of Food and Agriculture, 2016, 96, 331-338.	1.7	22
81	Gelâ€like emulsions prepared with zein nanoparticles produced through phase separation from acetic acid solutions. International Journal of Food Science and Technology, 2017, 52, 2670-2676.	1.3	22
82	Enzyme-Adsorbed Chitosan Nanogel Particles as Edible Pickering Interfacial Biocatalysts and Lipase-Responsive Phase Inversion of Emulsions. Journal of Agricultural and Food Chemistry, 2020, 68, 8890-8899.	2.4	22
83	Structural characterization of pectin-bismuth complexes and their aggregation in acidic conditions. International Journal of Biological Macromolecules, 2020, 154, 788-794.	3.6	22
84	Characterization and Interfacial Behavior of Nanoparticles Prepared from Amphiphilic Hydrolysates of β-Conglycinin–Dextran Conjugates. Journal of Agricultural and Food Chemistry, 2014, 62, 12678-12685.	2.4	20
85	<i>Quillaja</i> saponin-based hollow salt particles as solid carriers for enhancing sensory aroma with reduced sodium intake. Food and Function, 2018, 9, 191-199.	2.1	19
86	CO ₂ -responsive Pickering emulsions stabilized by soft protein particles for interfacial biocatalysis. Chemical Science, 2022, 13, 2884-2890.	3.7	19
87	An Improved Isolation Method of Soy βâ€Conglycinin Subunits and Their Characterization. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 997-1004.	0.8	18
88	Surface charge and conformational properties of phaseolin, the major globulin in red kidney bean (<i>Phaseolus vulgaris</i> L): effect of pH. International Journal of Food Science and Technology, 2011, 46, 1628-1635.	1.3	18
89	Modulation of Gut Microbiota by Soybean 7S Globulin Peptide That Involved Lipopolysaccharide–Peptide Interaction. Journal of Agricultural and Food Chemistry, 2019, 67, 2201-2211.	2.4	18
90	Complex coacervation of chitosan and soy globulins in aqueous solution: a electrophoretic mobility and light scattering study. International Journal of Food Science and Technology, 2011, 46, 1363-1369.	1.3	17

#	Article	IF	CITATIONS
91	Comparison of the colloidal stability, bioaccessibility and antioxidant activity of corn protein hydrolysate and sodium caseinate stabilized curcumin nanoparticles. Journal of Food Science and Technology, 2016, 53, 2923-2932.	1.4	17
92	Structure–Function Relationship of a Novel PR-5 Protein with Antimicrobial Activity from Soy Hulls. Journal of Agricultural and Food Chemistry, 2016, 64, 948-959.	2.4	17
93	Stabilization and functionalization of aqueous foams by Quillaja saponin-coated nanodroplets. Food Research International, 2017, 99, 679-687.	2.9	17
94	Preparation and stabilizing behavior of octenyl succinic esters of soybean soluble polysaccharide in acidified milk beverages. Food Hydrocolloids, 2017, 63, 421-428.	5.6	17
95	Gamma/alphaâ€zein hydrolysates as oral delivery vehicles: Enhanced physicochemical stability and <i>inÂvitro</i> bioaccessibility of curcumin. International Journal of Food Science and Technology, 2018, 53, 1622-1630.	1.3	17
96	One-pot ultrasonic cavitational emulsification of phytosterols oleogel-based flavor emulsions and oil powder stabilized by natural saponin. Food Research International, 2021, 150, 110757.	2.9	17
97	Preparation and characterisation of surfaceâ€active pectin from soya hulls by phosphateâ€assisted subcritical water combined with ultrasonic treatment. International Journal of Food Science and Technology, 2016, 51, 61-68.	1.3	15
98	Fabrication of Novel Hierarchical Multicompartment Highly Stable Triple Emulsions for the Segregation and Protection of Multiple Cargos by Spatial Co-encapsulation. Journal of Agricultural and Food Chemistry, 2019, 67, 10904-10912.	2.4	15
99	Corn protein hydrolysate as a new structural modifier for soybean protein isolate based O/W emulsions. LWT - Food Science and Technology, 2020, 118, 108763.	2.5	15
100	Effect of guar gum on the rheological, thermal and textural properties of soybean βâ€conglycinin gel. International Journal of Food Science and Technology, 2009, 44, 1314-1322.	1.3	14
101	Fabrication and delivery properties of soy Kunitz trypsin inhibitor nanoparticles. RSC Advances, 2016, 6, 85621-85633.	1.7	14
102	Effect of dextran glycation on nanofibril assembly of soya β onglycinin at pH 2.0 and the pH stability of nanofibrils. International Journal of Food Science and Technology, 2016, 51, 2260-2269.	1.3	14
103	Foaming properties and air–water interfacial behavior of corn protein hydrolyzate–tannic acid complexes. Journal of Food Science and Technology, 2019, 56, 905-913.	1.4	14
104	Hofmeister Effect-Assistant Fabrication of All-Natural Protein-based Porous Materials Templated from Pickering Emulsions. Journal of Agricultural and Food Chemistry, 2020, 68, 11261-11272.	2.4	14
105	Preparation of doubleâ€network tofu with mechanical and sensory toughness. International Journal of Food Science and Technology, 2016, 51, 962-969.	1.3	13
106	Preparation and characterisation of isoflavone aglyconeâ€rich calciumâ€binding soy protein hydrolysates. International Journal of Food Science and Technology, 2017, 52, 2230-2237.	1.3	13
107	Tailoring structure and properties of long-lived emulsion foams stabilized by a natural saponin glycyrrhizic acid: Role of oil phase. Food Research International, 2021, 150, 110733.	2.9	13
108	Development and characterisation of polylactic acid–gliadin bilayer/trilayer films as carriers of thymol. International Journal of Food Science and Technology, 2018, 53, 608-618.	1.3	12

#	Article	IF	CITATIONS
109	Salt reduction in liquid/semi-solid foods based on the mucopenetration ability of gum arabic. Food and Function, 2019, 10, 4090-4101.	2.1	12
110	Recent Advances and Applications of Plant-Based Bioactive Saponins in Colloidal Multiphase Food Systems. Molecules, 2021, 26, 6075.	1.7	12
111	Digestion Resistance of Soybean 7S Protein and Its Implications for Reinforcing the Gastric Mucus Barrier. Journal of Agricultural and Food Chemistry, 2022, 70, 8776-8787.	2.4	12
112	Effect of transglutaminase on the functional properties of GDL (gluconoâ€deltaâ€lactone) coldâ€set soybean glycinin gel. International Journal of Food Science and Technology, 2011, 46, 963-971.	1.3	11
113	Influence of Soy Protein Isolate Prepared by Phosphateâ€Assisted Hydrothermal Cooking on the Gelation of Myofibrillar Protein. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 523-531.	0.8	11
114	Robust and highly adaptable high internal phase gel emulsions stabilized solely by a natural saponin hydrogelator glycyrrhizic acid. Food and Function, 2022, 13, 280-289.	2.1	11
115	Ethyl cellulose-chitosan complex particles stabilized W/O Pickering emulsion as a recyclable bio-catalytic microreactor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128375.	2.3	11
116	Physicochemical properties of soy protein prepared by enzymeâ€assisted countercurrent extraction. International Journal of Food Science and Technology, 2018, 53, 1389-1396.	1.3	10
117	Enzymeâ€assisted development of biofunctional polyphenolâ€enriched buckwheat protein: physicochemical properties, in vitro digestibility, and antioxidant activity. Journal of the Science of Food and Agriculture, 2019, 99, 3176-3185.	1.7	9
118	Salt reduction in bread <i>via</i> enrichment of dietary fiber containing sodium and calcium. Food and Function, 2021, 12, 2660-2671.	2.1	9
119	Undigestible Gliadin Peptide Nanoparticles Penetrate Mucus and Reduce Mucus Production Driven by Intestinal Epithelial Cell Damage. Journal of Agricultural and Food Chemistry, 2021, 69, 7979-7989.	2.4	9
120	Inactivation of Soybean Bowman–Birk Inhibitor by Stevioside: Interaction Studies and Application to Soymilk. Journal of Agricultural and Food Chemistry, 2019, 67, 2255-2264.	2.4	8
121	Adsorption and foaming properties of edible egg yolk peptide nanoparticles: Effect of particle aggregation. Current Research in Food Science, 2021, 4, 270-278.	2.7	8
122	Properties of transglutaminaseâ€ŧreated red bean protein films. Journal of Applied Polymer Science, 2011, 122, 789-797.	1.3	7
123	Facile and Robust Route for Preparing Pickering High Internal Phase Emulsions Stabilized by Bare Zein Particles. ACS Food Science & Technology, 2021, 1, 1481-1491.	1.3	7
124	Effects of pepsin hydrolysis on the soy <i>β</i> â€conglycinin aggregates formed by heat treatment at different pH. International Journal of Food Science and Technology, 2014, 49, 1729-1735.	1.3	6
125	Multicompartment emulsion droplets for programmed release of hydrophobic cargoes. Food and Function, 2019, 10, 4522-4532.	2.1	6
126	Oxalic extraction of high methoxyl pectin and its application as a stabiliser. International Journal of Food Science and Technology, 2021, 56, 5220-5229.	1.3	6

#	Article	IF	CITATIONS
127	Rheological Properties of Soybean β-Conglycinin in Aqueous Dispersions: Effects of Concentration, Ionic Strength and Thermal Treatment. International Journal of Food Properties, 2011, 14, 264-279.	1.3	5
128	Influence of succinylation on the properties of cast films from red bean protein isolate at various plasticizer levels. Journal of Applied Polymer Science, 2011, 120, 1934-1941.	1.3	5
129	Improvement of microbial transglutaminaseâ€induced gelation of βâ€conglycinin by conjugation with dextran. International Journal of Food Science and Technology, 2014, 49, 976-982.	1.3	5
130	Modulating aroma release of flavour oil emulsion based on mucoadhesive property of tannic acid. Food Chemistry, 2022, 388, 132970.	4.2	5
131	Preparation and characterisation of soya milk enriched with isoflavone aglycone fermented by lactic acid bacteria combined with hydrothermal cooking pretreatment. International Journal of Food Science and Technology, 2015, 50, 1331-1337.	1.3	4
132	Preparation and characterisation of glyceollinâ€enriched soya bean protein using solidâ€state fermentation. International Journal of Food Science and Technology, 2017, 52, 1878-1886.	1.3	4
133	Characterisation of soybean glycinin and βâ€conglycinin fractionated by using MgCl ₂ instead of CaCl ₂ . International Journal of Food Science and Technology, 2010, 45, 155-162.	1.3	3
134	Effects of Î ³ -zein peptides on lipid membrane organization: Quartz crystal microbalance with dissipation and Langmuir monolayer studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 574, 86-93.	2.3	3
135	Isoflavones enhance the plasma cholesterol-lowering activity of 7S protein in hypercholesterolemic hamsters. Food and Function, 2019, 10, 7378-7386.	2.1	3
136	Fabrication and structural properties of water-dispersible phytosterol using hot melt extrusion. Journal of Food Science and Technology, 2021, 58, 2447-2451.	1.4	3
137	Extraction and characterisation of pectin polysaccharide from soybean dreg and its dispersion stability in acidified milk drink. International Journal of Food Science and Technology, 2021, 56, 5230-5241.	1.3	3
138	Pectin gels based on H+/(NH4)2SO4 and its potential in sustained release of NH4+. International Journal of Biological Macromolecules, 2022, 208, 486-493.	3.6	3
139	Improved extraction of disulphideâ€rich bioactive proteins from soya hulls: characterisation of a novel aspartic proteinase. International Journal of Food Science and Technology, 2016, 51, 1509-1515.	1.3	2
140	Physicochemical Properties Improvement of Soy Protein Using Divalent Ions During a Two tep Fractionation Process. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1235-1245.	0.8	0