
Xingjie Zan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2630137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Vehicleâ€Free Antimicrobial Polymer Hybrid Gold Nanoparticle as Synergistically Therapeutic Platforms for <i>Staphylococcus aureus</i> Infected Wound Healing. Advanced Science, 2022, 9, e2105223.	5.6	87

 $_{2}$ Covalently Attached, Silver-Doped Poly(vinyl alcohol) Hydrogel Films on Poly(<scp>l</scp>-lactic) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 7

3	Facile Method for Large Scale Alignment of One Dimensional Nanoparticles and Control over Myoblast Orientation and Differentiation. ACS Nano, 2013, 7, 8385-8396.	7.3	61
4	Medical Applications Based on Supramolecular Self-Assembled Materials From Tannic Acid. Frontiers in Chemistry, 2020, 8, 583484.	1.8	49
5	Effect of Roughness on <i>in Situ</i> Biomineralized CaP-Collagen Coating on the Osteogenesis of Mesenchymal Stem Cells. Langmuir, 2016, 32, 1808-1817.	1.6	46
6	Incorporation of Nanoparticles into Polyelectrolyte Multilayers via Counterion Exchange and in situ Reduction. Langmuir, 2009, 25, 12355-12360.	1.6	44
7	Biomolecular Assembly of Thermoresponsive Superlattices of the Tobacco Mosaic Virus with Large Tunable Interparticle Distances. Angewandte Chemie - International Edition, 2013, 52, 6638-6642.	7.2	44
8	Aligned Electroactive TMV Nanofibers as Enabling Scaffold for Neural Tissue Engineering. Biomacromolecules, 2015, 16, 3466-3472.	2.6	37
9	Polyelectrolyte uptake by PEMs: Impact of salt concentration. Polymer Chemistry, 2011, 2, 2581.	1.9	30
10	Shape Effect of Nanoparticles on Tumor Penetration in Monolayers Versus Spheroids. Molecular Pharmaceutics, 2019, 16, 2902-2911.	2.3	30
11	Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate. Biomaterials, 2014, 35, 5098-5109.	5.7	29
12	Engineering Polyelectrolyte Capsules with Independently Controlled Size and Shape. Langmuir, 2015, 31, 7601-7608.	1.6	29
13	Lysozyme (Lys), Tannic Acid (TA), and Graphene Oxide (GO) Thin Coating for Antibacterial and Enhanced Osteogenesis. ACS Applied Bio Materials, 2020, 3, 673-684.	2.3	29
14	Polyvalent display of RGD motifs on turnip yellow mosaic virus for enhanced stem cell adhesion and spreading. Acta Biomaterialia, 2012, 8, 2978-2985.	4.1	28
15	A facile and efficient strategy to encapsulate the model basic protein lysozyme into porous CaCO ₃ . Journal of Materials Chemistry B, 2018, 6, 4205-4215.	2.9	28
16	Multifunctional Tannic Acid (TA) and Lysozyme (Lys) Films Built Layer by Layer for Potential Application on Implant Coating. ACS Biomaterials Science and Engineering, 2019, 5, 3582-3594.	2.6	27
17	Hexahistidine-metal assemblies: A promising drug delivery system. Acta Biomaterialia, 2019, 90, 441-452.	4.1	27
18	Hyperbranched multiple polythioamides made from elemental sulfur for mercury adsorption. Polymer Chemistry, 2020, 11, 810-819.	1.9	27

XINGJIE ZAN

#	Article	IF	CITATIONS
19	Effective oxidative degradation of coal gasification wastewater by ozonation: A process study. Chemosphere, 2020, 255, 126963.	4.2	24
20	Building polyphenol and gelatin films as implant coating, evaluating from in vitro and in vivo performances. Colloids and Surfaces B: Biointerfaces, 2019, 181, 549-560.	2,5	23
21	Graphene Oxide and Lysozyme Ultrathin Films with Strong Antibacterial and Enhanced Osteogenesis. Langmuir, 2019, 35, 6752-6761.	1.6	23
22	Shear flow induced long-range ordering of rod-like viral nanoparticles within hydrogel. Colloids and Surfaces B: Biointerfaces, 2017, 158, 620-626.	2.5	22
23	A Facile and Universal Method to Efficiently Fabricate Diverse Protein Capsules for Multiple Potential Applications. ACS Applied Materials & amp; Interfaces, 2019, 11, 39209-39218.	4.0	22
24	3D bioprinting in orthopedics translational research. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 1172-1187.	1.9	22
25	Insight into the mechanism and factors on encapsulating basic model protein, lysozyme, into heparin doped CaCO3. Colloids and Surfaces B: Biointerfaces, 2019, 175, 184-194.	2.5	22
26	Preparation and Modification of Biomass-Based Functional Rubbers for Removing Mercury(II) from Aqueous Solution. Materials, 2020, 13, 632.	1.3	21
27	κ-Carrageenan/poly(N-acryloyl glycinamide) double-network hydrogels with high strength, good self-recovery, and low cytotoxicity. Journal of Materials Science, 2020, 55, 9109-9118.	1.7	19
28	Polyelectrolyte uptake by PEMs: Impacts of molecular weight and counterion. Polymer, 2012, 53, 5109-5115.	1.8	18
29	Designing nanoparticles with improved tumor penetration: surface properties from the molecular architecture viewpoint. Journal of Materials Chemistry B, 2019, 7, 953-964.	2.9	18
30	Engineering the surfaces of orthopedic implants with osteogenesis and antioxidants to enhance bone formation in vitro and in vivo. Colloids and Surfaces B: Biointerfaces, 2022, 212, 112319.	2.5	17
31	Self-Assembly of Rodlike Virus to Superlattices. Langmuir, 2013, 29, 12777-12784.	1.6	15
32	Metal–Organic Framework-Based Composites for Protein Delivery and Therapeutics. ACS Biomaterials Science and Engineering, 2022, 8, 4028-4038.	2.6	15
33	Progress and Challenges of Mercury-Free Catalysis for Acetylene Hydrochlorination. Catalysts, 2020, 10, 1218.	1.6	13
34	Genetically Engineered Plant Viral Nanoparticles Direct Neural Cells Differentiation and Orientation. Langmuir, 2015, 31, 9402-9409.	1.6	11
35	A bio-inspired, one-step but versatile coating onto various substrates with strong antibacterial and enhanced osteogenesis. Chemical Communications, 2019, 55, 2058-2061.	2.2	10
36	Thrombin-Loaded TA-CaCO ₃ Microspheres as a Budget, Adaptable, and Highly Efficient Hemostatic. ACS Applied Bio Materials, 2021, 4, 1030-1037.	2.3	9

Xingjie Zan

#	Article	IF	CITATIONS
37	Efficient delivery of cytosolic proteins by protein-hexahistidine-metal co-assemblies. Acta Biomaterialia, 2021, 129, 199-208.	4.1	9
38	Density-Adjustable Bio-Based Polysulfide Composite Prepared by Inverse Vulcanization and Bio-Based Fillers. Polymers, 2020, 12, 2127.	2.0	8
39	A Strategy to Fight against Triple-Negative Breast Cancer: pH-Responsive Hexahistidine-Metal Assemblies with High-Payload Drugs. ACS Applied Bio Materials, 2020, 3, 5331-5341.	2.3	8
40	Silanization of a Metal–Polyphenol Coating onto Diverse Substrates as a Strategy for Controllable Wettability with Enhanced Performance to Resist Acid Corrosion. Langmuir, 2021, 37, 3637-3647.	1.6	8
41	Material priority engineered metal-polyphenol networks: mechanism and platform for multifunctionalities. Journal of Nanobiotechnology, 2022, 20, .	4.2	8
42	Evaluation of His ₆ -Metal Assemblies as a Drug Delivery Vehicle in the Treatment of Anterior Segment Disease Using a Corneal Inflammation Model. ACS Biomaterials Science and Engineering, 2020, 6, 4012-4023.	2.6	7
43	Secondary Structure-Dominated Layer-by-Layer Growth Mode of Protein Coatings. Langmuir, 2021, 37, 13000-13011.	1.6	7
44	The construction and effect of physical properties on intracellular drug delivery of poly(amino acid) capsules. Colloids and Surfaces B: Biointerfaces, 2019, 177, 178-187.	2.5	6
45	The Bioinspired Facile Method to Efficiently Generate Diverse Proteinosomes with pH Switchable Permeability. Advanced Materials Interfaces, 2020, 7, 2000329.	1.9	6
46	Endowing Orthopedic Implants' Antibacterial, Antioxidation, and Osteogenesis Properties Through a Composite Coating of Nano-Hydroxyapatite, Tannic Acid, and Lysozyme. Frontiers in Bioengineering and Biotechnology, 2021, 9, 718255.	2.0	6
47	Design and Preparation of Polysulfide Flexible Polymers Based on Cottonseed Oil and Its Derivatives. Polymers, 2020, 12, 1858.	2.0	5
48	Improved Ozonation Efficiency for Polymerization Mother Liquid from Polyvinyl Chloride Production Using Tandem Reactors. Molecules, 2019, 24, 4436.	1.7	4
49	Micro-Structure Determines the Intrinsic Property Difference of Bio-Based Nitrogen-Doped Porous Carbon—A Case Study. Nanomaterials, 2020, 10, 1765.	1.9	4
50	Hexahistidine–Metal Assemblies: A Facile and Effective Codelivery System of Subunit Vaccines for Potent Humoral and Cellular Immune Responses. Molecular Pharmaceutics, 2020, 17, 2487-2498.	2.3	4
51	Deliver protein across bio-barriers via hexa-histidine metal assemblies for therapy: a case in corneal neovascularization model. Materials Today Bio, 2021, 12, 100143.	2.6	4
52	The novel aciniform silk protein (AcSp2-v2) reveals the unique repetitive domain with high acid and thermal stability and self-assembly capability. International Journal of Biological Macromolecules, 2022, 202, 91-101.	3.6	4
53	The Role of Iodine Catalyst in the Synthesis of 22-Carbon Tricarboxylic Acid and Its Ester: A Case Study. Catalysts, 2019, 9, 972.	1.6	3
54	One-Pot Generating Subunit Vaccine with High Encapsulating Efficiency and Fast Lysosome Escape for Potent Cellular Immune Response. Bioconjugate Chemistry, 2020, 31, 1917-1927.	1.8	3

XINGJIE ZAN

#	Article	IF	CITATIONS
55	Thermally stable poly (acrylic acidâ€acrylamideâ€biomassâ€fly ash) composites with improved temperature resistance and salt resistance. Journal of Applied Polymer Science, 2022, 139, 51533.	1.3	3
56	Efficient Delivery of Antibodies Intracellularly by Co-Assembly with Hexahistidine-Metal Assemblies (HmA). International Journal of Nanomedicine, 2021, Volume 16, 7449-7461.	3.3	3
57	Sheltering proteins from protease-mediated degradation and a de novo strategy for preventing acute liver injury. Biomaterials Science, 2021, 9, 4423-4427.	2.6	2
58	Universal Strategy to Efficiently Coat Zeolitic Imidazolate Frameworks onto Diverse Substrates. ACS Omega, 2022, 7, 17765-17773.	1.6	1
59	Biomaterials: The Bioinspired Facile Method to Efficiently Generate Diverse Proteinosomes with pH Switchable Permeability (Adv. Mater. Interfaces 14/2020). Advanced Materials Interfaces, 2020, 7, 2070078.	1.9	0
60	Insight into the mechanism and formation process of bioinspired poly(amino acid)/polyphenol capsules engineered with fast pH switchable permeability. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112234.	2.5	0
61	Effect of the stiffness of one-layer protein-based microcapsules on dendritic cell uptake and endocytic mechanism. Biomaterials Science, 2021, 10, 178-188.	2.6	0