
Michael Z Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2630092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor. Cell, 1999, 96, 857-868.	28.9	5,895
2	Improving the photostability of bright monomeric orange and red fluorescent proteins. Nature Methods, 2008, 5, 545-551.	19.0	915
3	Improving FRET dynamic range with bright green and red fluorescent proteins. Nature Methods, 2012, 9, 1005-1012.	19.0	694
4	Mammalian Expression of Infrared Fluorescent Proteins Engineered from a Bacterial Phytochrome. Science, 2009, 324, 804-807.	12.6	638
5	Characterization of Engineered Channelrhodopsin Variants with Improved Properties and Kinetics. Biophysical Journal, 2009, 96, 1803-1814.	0.5	638
6	A Suite of Transgenic Driver and Reporter Mouse Lines with Enhanced Brain-Cell-Type Targeting and Functionality. Cell, 2018, 174, 465-480.e22.	28.9	571
7	Genetically encoded indicators of neuronal activity. Nature Neuroscience, 2016, 19, 1142-1153.	14.8	553
8	The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins. Trends in Biochemical Sciences, 2017, 42, 111-129.	7.5	514
9	High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nature Neuroscience, 2014, 17, 884-889.	14.8	381
10	Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting. Scientific Reports, 2016, 6, 20889.	3.3	339
11	A Guide to Fluorescent Protein FRET Pairs. Sensors, 2016, 16, 1488.	3.8	332
12	Optical Control of Protein Activity by Fluorescent Protein Domains. Science, 2012, 338, 810-814.	12.6	249
13	Autofluorescent Proteins with Excitation in the Optical Window for Intravital Imaging in Mammals. Chemistry and Biology, 2009, 16, 1169-1179.	6.0	244
14	Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice. Cell, 2019, 179, 1590-1608.e23.	28.9	242
15	Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing InÂVivo. Cell, 2016, 166, 245-257.	28.9	228
16	A bright cyan-excitable orange fluorescent protein facilitates dual-emission microscopy and enhances bioluminescence imaging in vivo. Nature Biotechnology, 2016, 34, 760-767.	17.5	221
17	Eph-Dependent Tyrosine Phosphorylation of Ephexin1 Modulates Growth Cone Collapse. Neuron, 2005, 46, 191-204.	8.1	216
18	Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein. Nature Methods, 2014, 11, 572-578.	19.0	196

MICHAEL Z LIN

#	Article	IF	CITATIONS
19	Tunable and reversible drug control of protein production via a self-excising degron. Nature Chemical Biology, 2015, 11, 713-720.	8.0	180
20	Fluorescent indicators for simultaneous reporting of all four cell cycle phases. Nature Methods, 2016, 13, 993-996.	19.0	171
21	Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators. ELife, 2017, 6, .	6.0	161
22	Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo. Nature Methods, 2020, 17, 287-290.	19.0	155
23	Optical control of cell signaling by single-chain photoswitchable kinases. Science, 2017, 355, 836-842.	12.6	151
24	Photoswitchable fluorescent proteins: ten years of colorful chemistry and exciting applications. Current Opinion in Chemical Biology, 2013, 17, 682-690.	6.1	144
25	Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals. Nature Methods, 2020, 17, 852-860.	19.0	123
26	A Single-Chain Photoswitchable CRISPR-Cas9 Architecture for Light-Inducible Gene Editing and Transcription. ACS Chemical Biology, 2018, 13, 443-448.	3.4	103
27	Toward the Second Generation of Optogenetic Tools. Journal of Neuroscience, 2010, 30, 14998-15004.	3.6	95
28	Cell-Type-Specific Optical Recording of Membrane Voltage Dynamics in Freely Moving Mice. Cell, 2016, 167, 1650-1662.e15.	28.9	90
29	Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell, 2022, 185, 1745-1763.e22.	28.9	88
30	Simultaneous dual-color fluorescence lifetime imaging with novel red-shifted fluorescent proteins. Nature Methods, 2016, 13, 989-992.	19.0	87
31	Understanding CRY2 interactions for optical control of intracellular signaling. Nature Communications, 2017, 8, 547.	12.8	86
32	Designs and sensing mechanisms of genetically encoded fluorescent voltage indicators. Current Opinion in Chemical Biology, 2015, 27, 31-38.	6.1	84
33	New Alternately Colored FRET Sensors for Simultaneous Monitoring of Zn2+ in Multiple Cellular Locations. PLoS ONE, 2012, 7, e49371.	2.5	77
34	Fluorescent and photo-oxidizing TimeSTAMP tags track protein fates in light and electron microscopy. Nature Neuroscience, 2012, 15, 1742-1751.	14.8	71
35	Quantitative Multiscale Cell Imaging in Controlled 3D Microenvironments. Developmental Cell, 2016, 36, 462-475.	7.0	70
36	Selective Labeling of Proteins with Chemical Probes in Living Cells. Physiology, 2008, 23, 131-141.	3.1	67

MICHAEL Z LIN

#	Article	IF	CITATIONS
37	A drug-controllable tag for visualizing newly synthesized proteins in cells and whole animals. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7744-7749.	7.1	63
38	Optobiology: optical control of biological processes via protein engineering. Biochemical Society Transactions, 2013, 41, 1183-1188.	3.4	42
39	StaPLs: versatile genetically encoded modules for engineering drug-inducible proteins. Nature Methods, 2018, 15, 523-526.	19.0	42
40	Brightening up Biology: Advances in Luciferase Systems for <i>in Vivo</i> Imaging. ACS Chemical Biology, 2021, 16, 2707-2718.	3.4	42
41	Integrated Neurophotonics: Toward Dense Volumetric Interrogation of Brain Circuit Activity—at Depth and in Real Time. Neuron, 2020, 108, 66-92.	8.1	40
42	Replication-Competent Influenza Virus and Respiratory Syncytial Virus Luciferase Reporter Strains Engineered for Co-Infections Identify Antiviral Compounds in Combination Screens. Biochemistry, 2015, 54, 5589-5604.	2.5	38
43	An orange calcium-modulated bioluminescent indicator for non-invasive activity imaging. Nature Chemical Biology, 2019, 15, 433-436.	8.0	37
44	A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science, 2019, 364, .	12.6	33
45	Optobiochemistry: Genetically Encoded Control of Protein Activity by Light. Annual Review of Biochemistry, 2021, 90, 475-501.	11.1	30
46	Study protocol: multi-parametric magnetic resonance imaging for therapeutic response prediction in rectal cancer. BMC Cancer, 2017, 17, 465.	2.6	29
47	On the cutting edge: protease-based methods for sensing and controlling cell biology. Nature Methods, 2020, 17, 885-896.	19.0	24
48	Optical control of biological processes by lightâ€switchable proteins. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 545-554.	5.9	22
49	Beyond the rainbow: new fluorescent proteins brighten the infrared scene. Nature Methods, 2011, 8, 726-728.	19.0	19
50	Investigating neuronal function with optically controllable proteins. Frontiers in Molecular Neuroscience, 2015, 8, 37.	2.9	17
51	Two-Photon Voltage Imaging of Spontaneous Activity from Multiple Neurons Reveals Network Activity in Brain Tissue. IScience, 2020, 23, 101363.	4.1	17
52	Optical control of fast and processive engineered myosins in vitro and in living cells. Nature Chemical Biology, 2021, 17, 540-548.	8.0	17
53	Structure-guided wavelength tuning in far-red fluorescent proteins. Current Opinion in Structural Biology, 2016, 39, 124-133.	5.7	14
54	Excitation wavelength optimization improves photostability of ASAP-family GEVIs. Molecular Brain, 2018, 11, 32.	2.6	13

MICHAEL Z LIN

#	Article	IF	CITATIONS
55	TimeSTAMP Tagging of Newly Synthesized Proteins. Current Protocols in Protein Science, 2010, 59, Unit 26.5.	2.8	9
56	A red fluorescent protein with improved monomericity enables ratiometric voltage imaging with ASAP3. Scientific Reports, 2022, 12, 3678.	3.3	9
57	Optical regulation of endogenous RhoA reveals selection of cellular responses by signal amplitude. Cell Reports, 2022, 40, 111080.	6.4	8
58	Kinase pathway inhibition restores PSD95 induction in neurons lacking fragile X mental retardation protein. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12007-12012.	7.1	5
59	A Bright, Nontoxic, and Non-aggregating red Fluorescent Protein for Long-Term Labeling of Fine Structures in Neurons. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	4
60	Combinatorial effects of RhoA and Cdc42 on the actin cytoskeleton revealed by photoswitchable GEFs. Sensors and Actuators B: Chemical, 2022, 369, 132316.	7.8	4
61	A Suite of Transgenic Driver and Reporter Mouse Lines with Enhanced Brain Cell Type Targeting and Functionality. SSRN Electronic Journal, 0, , .	0.4	2
62	Experimental systems for optogenetic control of protein activity with photodissociable fluorescent proteins. , 2015, , .		1
63	FRET Imaging of Rho GTPase Activity with Red Fluorescent Protein-Based FRET Pairs. Methods in Molecular Biology, 2022, 2438, 31-43.	0.9	1
64	An Axonal Blueprint: Generating Neuronal Polarity with Light-Inducible Proteins. Cell Chemical Biology, 2019, 26, 1634-1636.	5.2	0
65	Simultaneous Detection of Four Cell Cycle Phases with Live Fluorescence Imaging. Methods in Molecular Biology. 2021. 2274. 25-35.	0.9	0