Barry H Paw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2630067/publications.pdf

Version: 2024-02-01

50566 38517 10,273 113 48 99 citations h-index g-index papers 117 117 117 12561 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The mitochondrial metal transporters mitoferrin1 and mitoferrin2 are required for liver regeneration and cell proliferation in mice. Journal of Biological Chemistry, 2020, 295, 11002-11020.	1.6	25
2	Mutations in the iron-sulfur cluster biogenesis protein HSCB cause congenital sideroblastic anemia. Journal of Clinical Investigation, 2020, 130, 5245-5256.	3.9	13
3	Using the Zebrafish as an Approach to Examine the Mechanisms of Vertebrate Erythropoiesis. Methods in Molecular Biology, 2018, 1698, 11-36.	0.4	15
4	FAM210B is an erythropoietin target and regulates erythroid heme synthesis by controlling mitochondrial iron import and ferrochelatase activity. Journal of Biological Chemistry, 2018, 293, 19797-19811.	1.6	30
5	The role of ClpX in erythropoietic protoporphyria. Hematology, Transfusion and Cell Therapy, 2018, 40, 182-188.	0.1	20
6	Restored iron transport by a small molecule promotes absorption and hemoglobinization in animals. Science, 2017, 356, 608-616.	6.0	112
7	Mutation in human <i>CLPX</i> elevates levels of <i>\hat{I}-</i> aminolevulinate synthase and protoporphyrin IX to promote erythropoietic protoporphyria. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8045-E8052.	3.3	69
8	Reductions in the mitochondrial ABC transporter Abcb10 affect the transcriptional profile of heme biosynthesis genes. Journal of Biological Chemistry, 2017, 292, 16284-16299.	1.6	28
9	Intracellular iron and heme trafficking and metabolism in developing erythroblasts. Metallomics, 2017, 9, 1193-1203.	1.0	45
10	Studying disorders of vertebrate iron and heme metabolism using zebrafish. Methods in Cell Biology, 2017, 138, 193-220.	0.5	7
11	Erythropoietin signaling regulates heme biosynthesis. ELife, 2017, 6, .	2.8	36
12	<i>Hscb</i> , a Mitochondrial Iron-Sulfur Cluster Assembly Co-Chaperone, Is a Novel Candidate Gene for Congenital Sideroblastic Anemia. Blood, 2017, 130, 79-79.	0.6	4
13	Examining the CREB Transcriptional Program in Erythropoiesis. Blood, 2017, 130, 933-933.	0.6	5
14	A recurring mutation in the respiratory complex 1 protein NDUFB11 is responsible for a novel form of X-linked sideroblastic anemia. Blood, 2016, 128, 1913-1917.	0.6	33
15	A role for iron deficiency in dopaminergic neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3417-3418.	3 . 3	14
16	Authors response to "Comment on: 'Homozygous knockout of the piezo1 gene in the zebrafish is not associated with anemia". Haematologica, 2016, 101, e39-e39.	1.7	8
17	Erythropoietin Signaling Regulates Heme Biosynthesis. Blood, 2016, 128, 543-543.	0.6	О
18	Hematopoietic stem cells develop in the absence of endothelial cadherin 5 expression. Blood, 2015, 126, 2811-2820.	0.6	20

#	Article	IF	Citations
19	The mTORC1/4E-BP pathway coordinates hemoglobin production with <scp>L</scp> -leucine availability. Science Signaling, 2015, 8, ra34.	1.6	54
20	Homozygous knockout of the piezo1 gene in the zebrafish is not associated with anemia. Haematologica, 2015, 100, e483-e485.	1.7	23
21	Mitochondrial ClpX Activates a Key Enzyme for Heme Biosynthesis and Erythropoiesis. Cell, 2015, 161, 858-867.	13.5	95
22	Mitochondrial Protein Kinase A Regulates Heme Biosynthesis. Blood, 2015, 126, 271-271.	0.6	1
23	Biallelic Mutations in PARP4 Are Linked to a Variant Form of Congenital Dyserythropoietic Anemia. Blood, 2015, 126, 272-272.	0.6	2
24	Mitochondrial transport of protoporphyrinogen IX in erythroid cells. Oncotarget, 2015, 6, 20742-20743.	0.8	8
25	Hematopoietic Stem Cells Develop in the Absence of Endothelial Cadherin 5 Expression. Blood, 2015, 126, 1165-1165.	0.6	0
26	Iron regulatory protein-1 protects against mitoferrin-1-deficient porphyria Journal of Biological Chemistry, 2014, 289, 13707.	1.6	0
27	Characterization of Genomic Deletion Efficiency Mediated by Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/Cas9 Nuclease System in Mammalian Cells*. Journal of Biological Chemistry, 2014, 289, 21312-21324.	1.6	309
28	Molecular cloning and functional characterization of zebrafish Slc4a3/Ae3 anion exchanger. Pflugers Archiv European Journal of Physiology, 2014, 466, 1605-1618.	1.3	8
29	Iron Regulatory Protein-1 Protects against Mitoferrin-1-deficient Porphyria. Journal of Biological Chemistry, 2014, 289, 7835-7843.	1.6	34
30	TMEM14C is required for erythroid mitochondrial heme metabolism. Journal of Clinical Investigation, 2014, 124, 4294-4304.	3.9	62
31	Erythroid Cells Adapt to L-Leucine Scarcity By Reducing Hemoglobin Production Via the mTORC1/4E-BP Pathway. Blood, 2014, 124, 2660-2660.	0.6	0
32	Teleost growth factor independence (gfi) genes differentially regulate successive waves of hematopoiesis. Developmental Biology, 2013, 373, 431-441.	0.9	30
33	Macrocytic Anemia and Mitochondriopathy Resulting from a Defect in Sideroflexin 4. American Journal of Human Genetics, 2013, 93, 906-914.	2.6	58
34	Snx3 Regulates Recycling of the Transferrin Receptor and Iron Assimilation. Cell Metabolism, 2013, 17, 343-352.	7.2	97
35	Zebrafish as a Genetic Model of Hematopoiesis and Human Red Blood Cell Diseases. Handbook of Porphyrin Science, 2013, , 85-115.	0.3	0
36	Distinct Neuroblastoma-associated Alterations of PHOX2B Impair Sympathetic Neuronal Differentiation in Zebrafish Models. PLoS Genetics, 2013, 9, e1003533.	1.5	55

#	Article	IF	CITATIONS
37	ATP-Binding Cassette B10 Regulates Early Steps of Heme Synthesis. Circulation Research, 2013, 113, 279-287.	2.0	50
38	Thescatmouse model highlights RASA3, a GTPase activating protein, as a key regulator of vertebrate erythropoiesis and megakaryopoiesis. Small GTPases, 2013, 4, 47-50.	0.7	4
39	Glucose metabolism impacts the spatiotemporal onset and magnitude of HSC induction in vivo. Blood, 2013, 121, 2483-2493.	0.6	96
40	Tmem14c Plays An Essential Role In Mitochondrial Heme Metabolism. Blood, 2013, 122, 427-427.	0.6	1
41	Sideroflexin 4 Deficiency Results In An Erythroid Differentiation Defect. Blood, 2013, 122, 3417-3417.	0.6	0
42	Heme metabolism and erythropoiesis. Current Opinion in Hematology, 2012, 19, 156-162.	1.2	73
43	Critical function for the Ras-GTPase activating protein RASA3 in vertebrate erythropoiesis and megakaryopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12099-12104.	3.3	31
44	Mitochondrial Atpif1 regulates haem synthesis in developing erythroblasts. Nature, 2012, 491, 608-612.	13.7	78
45	L-leucine improves the anemia and developmental defects associated with Diamond-Blackfan anemia and del(5q) MDS by activating the mTOR pathway. Blood, 2012, 120, 2214-2224.	0.6	149
46	Cellular and mitochondrial iron homeostasis in vertebrates. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1459-1467.	1.9	88
47	Mutation mapping and identification by whole-genome sequencing. Genome Research, 2012, 22, 1541-1548.	2.4	126
48	ABCB6 Mutations Cause Ocular Coloboma. American Journal of Human Genetics, 2012, 90, 40-48.	2.6	75
49	Megaloblastic Anemia and Mitochondriopathy Caused by a Homozygous Mutation in Sideroflexin-4 Blood, 2012, 120, 79-79.	0.6	0
50	Targeted deletion of the mouse Mitoferrin1 gene: from anemia to protoporphyria. Blood, 2011, 117, 5494-5502.	0.6	77
51	Abnormal mitoferrin-1 expression in patients with erythropoietic protoporphyria. Experimental Hematology, 2011, 39, 784-794.	0.2	46
52	Identification of Distal <i>cis</i> -Regulatory Elements at Mouse Mitoferrin Loci Using Zebrafish Transgenesis. Molecular and Cellular Biology, 2011, 31, 1344-1356.	1.1	31
53	Metabolism-Induced Reactive Oxygen Species and Hif $\hat{1}$ 1-Mediated Gene Regulation Control the Timing and Magnitude of Hematopoietic Stem Cell Induction. Blood, 2011, 118, 1266-1266.	0.6	1
54	Ferrochelatase forms an oligomeric complex with mitoferrin-1 and Abcb10 for erythroid heme biosynthesis. Blood, 2010, 116, 628-630.	0.6	146

#	Article	IF	Citations
55	Iron and Porphyrin Trafficking in Heme Biogenesis. Journal of Biological Chemistry, 2010, 285, 26753-26759.	1.6	116
56	Antagonistic roles of the ERK and p38 MAPK signalling pathways in globin expression, haem biosynthesis and iron uptake1. Biochemical Journal, 2010, 432, 145-151.	1.7	9
57	miR-451 protects against erythroid oxidant stress by repressing 14-3-3ζ. Genes and Development, 2010, 24, 1620-1633.	2.7	192
58	Intoxication of zebrafish and mammalian cells by cholera toxin depends on the flotillin/reggie proteins but not Derlin-1 or -2. Journal of Clinical Investigation, 2010, 120, 4399-4409.	3.9	74
59	atpif1 regulates Mitochondrial Heme Synthesis In Developing Erythroid Cells. Blood, 2010, 116, 163-163.	0.6	0
60	Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16263-16268.	3.3	194
61	Regulation of Mitochondrial Iron Import through Differential Turnover of Mitoferrin 1 and Mitoferrin 2. Molecular and Cellular Biology, 2009, 29, 1007-1016.	1.1	280
62	In vivo inactivation of MASTL kinase results in thrombocytopenia. Experimental Hematology, 2009, 37, 901-908.	0.2	41
63	Construction and application of a zebrafish array comparative genomic hybridization platform. Genes Chromosomes and Cancer, 2009, 48, 155-170.	1.5	21
64	Mutations affecting the secretory COPII coat component SEC23B cause congenital dyserythropoietic anemia type II. Nature Genetics, 2009, 41, 936-940.	9.4	250
65	Discovery of Genes Essential for Heme Biosynthesis through Large-Scale Gene Expression Analysis. Cell Metabolism, 2009, 10, 119-130.	7.2	178
66	The role and regulation of friend of GATA-1 (FOG-1) during blood development in the zebrafish. Blood, 2009, 114, 4654-4663.	0.6	41
67	Zebrafish kidney stromal cell lines support multilineage hematopoiesis. Blood, 2009, 114, 279-289.	0.6	74
68	Both p53-Dependent and -Independent Pathways Contribute to Erythroid Dysplasia in a Zebrafish Model for Diamond Blackfan Anemia Blood, 2009, 114, 177-177.	0.6	2
69	Positional Cloning of the Mouse Scat Mutation Reveals a Critical Role for RASA3, a Ras GTPase Activating Protein, in Vertebrate Erythropoiesis Blood, 2009, 114, 776-776.	0.6	0
70	Zebrafish mutants with disrupted early Tâ€cell and thymus development identified in early pressure screen. Developmental Dynamics, 2008, 237, 2575-2584.	0.8	29
71	Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature, 2008, 453, 1127-1131.	13.7	275
72	montalcino, A zebrafish model for variegate porphyria. Experimental Hematology, 2008, 36, 1132-1142.	0.2	36

#	Article	IF	CITATIONS
73	A GATA-1-regulated microRNA locus essential for erythropoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3333-3338.	3.3	309
74	Zebrafish <i>ae2.2</i> encodes a second slc4a2 anion exchanger. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R1081-R1091.	0.9	10
75	Identification of ZBP-89 as a Novel GATA-1-Associated Transcription Factor Involved in Megakaryocytic and Erythroid Development. Molecular and Cellular Biology, 2008, 28, 2675-2689.	1.1	62
76	Carboxypeptidase A5 identifies a novel mast cell lineage in the zebrafish providing new insight into mast cell fate determination. Blood, 2008, 112, 2969-2972.	0.6	117
77	The microRNA144/451 Locus Enhances Nuclear FOXO3a Activity to Protect Erythroid Cells against Oxidant Stress. Blood, 2008, 112, 277-277.	0.6	48
78	Mitoferrin1 Transgenic Zebrafish Line Serves as a Model to Study Erythroid Cell Fate during Hematopoiesis. Blood, 2008, 112, 3576-3576.	0.6	1
79	Rsp1 Is Indispensable for mRNA Stability during Erythroid Terminal Differentiation. Blood, 2008, 112, 532-532.	0.6	12
80	Abcb10 Physically Interacts with Mitoferrin1 to Enhance Its Stability for Heme Synthesis in the Erythroid Mitochondria. Blood, 2008, 112, 530-530.	0.6	0
81	Iron Does Not "Jiggle Free―in Mitochondria: Is Mitoferrin the Only Answer? Blood, 2008, 112, sci-27-sci-27.	0.6	0
82	Transcriptional Regulation of Thrombopoiesis Blood, 2008, 112, sci-38-sci-38.	0.6	0
83	Network of coregulated spliceosome components revealed by zebrafish mutant in recycling factor p110. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6608-6613.	3.3	65
84	Vertebrate Models for Sickle Cell Disease Research., 2007,, 237-257.		0
85	Mitoferrin is essential for erythroid iron assimilation. Nature, 2006, 440, 96-100.	13.7	514
86	Vascular endothelial growth factor receptor signaling is required for cardiac valve formation in zebrafish. Developmental Dynamics, 2006, 235, 29-37.	0.8	42
87	Targeted Disruption of the Mouse Mitoferrin (Slc25A37) Mitochondrial Solute Carrier Results in Defective Primitive and Definitive Erythropoiesis Blood, 2006, 108, 265-265.	0.6	5
88	Abnormal Expression of Human Mitoferrin (SLC25A37) Is Associated with a Variant of Erythropoietic Protoporphyria Blood, 2006, 108, 3-3.	0.6	5
89	Essential Role of Kindlin 3 in Zebrafish Thrombopoiesis Blood, 2006, 108, 1166-1166.	0.6	0
90	Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood, 2005, 106, 3803-3810.	0.6	341

#	Article	IF	CITATIONS
91	Deficiency of glutaredoxin 5 reveals Fe–S clusters are required for vertebrate haem synthesis. Nature, 2005, 436, 1035-1039.	13.7	343
92	Zebrafish slc4a2/ae2 anion exchanger: cDNA cloning, mapping, functional characterization, and localization. American Journal of Physiology - Renal Physiology, 2005, 289, F835-F849.	1.3	37
93	Identification of zfp148 (ZBP-89) as a Novel GATA-1 Associated Transcription Factor Involved in Megakaryopoiesis and Definitive Erythropoiesis Blood, 2005, 106, 828-828.	0.6	3
94	Cloning and characterization of an Mx gene and its corresponding promoter from the zebrafish, Danio rerio. Developmental and Comparative Immunology, 2004, 28, 295-306.	1.0	86
95	Zebrafish as a model of human hematologic disorders. Current Opinion in Hematology, 2004, 11, 255-261.	1.2	30
96	The pu.1 promoter drives myeloid gene expression in zebrafish. Blood, 2004, 104, 1291-1297.	0.6	133
97	Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency. Nature Genetics, 2003, 34, 59-64.	9.4	132
98	Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nature Immunology, 2003, 4, 1238-1246.	7.0	718
99	Characterization of embryonic globin genes of the zebrafish. Developmental Biology, 2003, 255, 48-61.	0.9	150
100	The zebrafish spi1 promoter drives myeloid-specific expression in stable transgenic fish. Blood, 2003, 102, 3238-3240.	0.6	94
101	Zebrafish a genetic model for vertebrate organogenesis and human disorders. Frontiers in Bioscience - Landmark, 2003, 8, d1227-1253.	3.0	71
102	The zebrafish mutant gene chardonnay (cdy) encodes divalent metal transporter 1 (DMT1). Blood, 2002, 100, 4655-4659.	0.6	97
103	Zebrafish SPI-1 (PU.1) Marks a Site of Myeloid Development Independent of Primitive Erythropoiesis: Implications for Axial Patterning. Developmental Biology, 2002, 246, 274-295.	0.9	193
104	Characterization of zebrafish <i>merlot/chablis</i> as non-mammalian vertebrate models for severe congenital anemia due to protein 4.1 deficiency. Development (Cambridge), 2002, 129, 4359-4370.	1.2	55
105	Characterization of zebrafish merlot/chablis as non-mammalian vertebrate models for severe congenital anemia due to protein 4.1 deficiency. Development (Cambridge), 2002, 129, 4359-70.	1.2	18
106	Cloning of the Zebrafish retsina Blood Mutation: A Genetic Model for Dyserythropoiesis and Erythroid Cytokinesis. Blood Cells, Molecules, and Diseases, 2001, 27, 62-64.	0.6	12
107	Myelopoiesis in the zebrafish, Danio rerio. Blood, 2001, 98, 643-651.	0.6	391
108	Zebrafish: a genetic approach in studying hematopoiesis. Current Opinion in Hematology, 2000, 7, 79-84.	1.2	40

#	Article	IF	CITATIONS
109	Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature, 2000, 403, 776-781.	13.7	1,491
110	Gene Duplication of Zebrafish JAK2 Homologs Is Accompanied by Divergent Embryonic Expression Patterns: Only jak2a Is Expressed During Erythropoiesis. Blood, 1999, 94, 2622-2636.	0.6	69
111	Zebrafishstat3 is expressed in restricted tissues during embryogenesis andstat1 rescues cytokine signaling in aSTAT1-deficient human cell line. Developmental Dynamics, 1999, 215, 352-370.	0.8	105
112	Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia. Nature Genetics, 1998, 20, 244-250.	9.4	239
113	Isolation and properties of N.epsilonhydroxylysine:acetyl coenzyme A N.epsilontransacetylase from Escherichia coli pABN11. Biochemistry, 1986, 25, 2485-2489.	1.2	27