Eva K Wirth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2629988/publications.pdf Version: 2024-02-01

Ενια Κ Μιρτμ

#	Article	IF	CITATIONS
1	Perinatal exposure to the thyroperoxidase inhibitors methimazole and amitrole perturbs thyroid hormone system signaling and alters motor activity in rat offspring. Toxicology Letters, 2022, 354, 44-55.	0.8	12
2	3,5-T2-an Endogenous Thyroid Hormone Metabolite as Promising Lead Substance in Anti-Steatotic Drug Development?. Metabolites, 2022, 12, 582.	2.9	6
3	Finerenone Reduces Renal RORγt γδT Cells and Protects against Cardiorenal Damage. American Journal of Nephrology, 2022, 53, 552-564.	3.1	6
4	Fat-body brummer lipase determines survival and cardiac function during starvation in Drosophila melanogaster. IScience, 2021, 24, 102288.	4.1	11
5	The Amino Acid Transporter Mct10/Tat1 Is Important to Maintain the TSH Receptor at Its Canonical Basolateral Localization and Assures Regular Turnover of Thyroid Follicle Cells in Male Mice. International Journal of Molecular Sciences, 2021, 22, 5776.	4.1	1
6	Testing for heterotopia formation in rats after developmental exposure to selected inÂvitro inhibitors of thyroperoxidase. Environmental Pollution, 2021, 283, 117135.	7.5	19
7	The Thyroid Hormone Transporter Mct8 Restricts Cathepsin-Mediated Thyroglobulin Processing in Male Mice through Thyroid Auto-Regulatory Mechanisms That Encompass Autophagy. International Journal of Molecular Sciences, 2021, 22, 462.	4.1	5
8	Function of Cathepsin K in the Central Nervous System of Male Mice is Independent of Its Role in the Thyroid Gland. Cellular and Molecular Neurobiology, 2020, 40, 695-710.	3.3	10
9	Spatiotemporal Changes of Cerebral Monocarboxylate Transporter 8 Expression. Thyroid, 2020, 30, 1366-1383.	4.5	22
10	Protein modification with ISG15 blocks coxsackievirus pathology by antiviral and metabolic reprogramming. Science Advances, 2020, 6, eaay1109.	10.3	27
11	Neuronal effects of thyroid hormone metabolites. Molecular and Cellular Endocrinology, 2017, 458, 136-142.	3.2	12
12	Interdependence of thyroglobulin processing and thyroid hormone export in the mouse thyroid gland. European Journal of Cell Biology, 2017, 96, 440-456.	3.6	23
13	Effects of age and soybean isoflavones on hepatic cholesterol metabolism and thyroid hormone availability in acyclic female rats. Experimental Gerontology, 2017, 92, 74-81.	2.8	15
14	Involvement of the L-Type Amino Acid Transporter Lat2 in the Transport of 3,3′-Diiodothyronine across the Plasma Membrane. European Thyroid Journal, 2015, 4, 42-50.	2.4	22
15	A Nonradioactive Uptake Assay for Rapid Analysis of Thyroid Hormone Transporter Function. Endocrinology, 2015, 156, 2739-2745.	2.8	21
16	Transport of Thyroid Hormone in Brain. Frontiers in Endocrinology, 2014, 5, 98.	3.5	77
17	Soy isoflavones interfere with thyroid hormone homeostasis in orchidectomized middle-aged rats. Toxicology and Applied Pharmacology, 2014, 278, 124-134.	2.8	28
18	Developmental and cell type-specific expression of thyroid hormone transporters in the mouse brain and in primary brain cells. Glia, 2011, 59, 463-471.	4.9	106

Eva K Wirth

#	ARTICLE	IF	CITATIONS
19	Monocarboxylate transporter 8 deficiency: altered thyroid morphology and persistent high triiodothyronine/thyroxine ratio after thyroidectomy. European Journal of Endocrinology, 2011, 165, 555-561.	3.7	42
20	Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration. FASEB Journal, 2010, 24, 844-852.	0.5	193
21	Neuronal 3′,3,5-Triiodothyronine (T ₃) Uptake and Behavioral Phenotype of Mice Deficient in <i>Mct8</i> , the Neuronal T ₃ Transporter Mutated in Allan–Herndon–Dudley Syndrome. Journal of Neuroscience, 2009, 29, 9439-9449.	3.6	172