Shouxin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2629941/publications.pdf

Version: 2024-02-01

46984 42364 9,040 115 47 92 citations h-index g-index papers 118 118 118 10283 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multipurpose Solar-Thermal Hydrogel Platform for Desalination of Seawater and Subsequent Collection of Atmospheric Water. ACS ES&T Water, 2023, 3, 1740-1746.	2.3	8
2	Carbon dots confined in 3D polymer network: Producing robust room temperature phosphorescence with tunable lifetimes. Chinese Chemical Letters, 2022, 33, 783-787.	4.8	21
3	Exploring the Circular Polarization Capacity from Chiral Cellulose Nanocrystal Films for a Photoâ€Controlled Chiral Helix of Supramolecular Polymers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
4	Boosting solar-thermal-electric conversion of thermoelectrochemical cells by construction of a carboxymethylcellulose-interpenetrated polyacrylamide network. Journal of Materials Chemistry A, 2022, 10, 7785-7791.	5.2	7
5	Sustainable Afterglow Roomâ€Temperature Phosphorescence Emission Materials Generated Using Natural Phenolics. Angewandte Chemie, 2022, 134, .	1.6	7
6	Sustainable Afterglow Roomâ€√emperature Phosphorescence Emission Materials Generated Using Natural Phenolics. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
7	Repurposing lignin to generate functional afterglow paper. Cell Reports Physical Science, 2022, 3, 100867.	2.8	3
8	The role of fluorescent carbon dots in crops: Mechanism and applications. SmartMat, 2022, 3, 208-225.	6.4	21
9	Constructing ultra-stable photothermal plastics assisted by carbon dots with photocaged reactivity. Matter, 2022, 5, 2864-2881.	5.0	8
10	Woodâ€Derived Carbon Materials and Lightâ€Emitting Materials. Advanced Materials, 2021, 33, e2000596.	11.1	75
11	Producing long afterglow by cellulose confinement effect: A wood-inspired design for sustainable phosphorescent materials. Carbon, 2021, 171, 946-952.	5.4	41
12	Compressible, anisotropic lamellar cellulose-based carbon aerogels enhanced by carbon dots for superior energy storage and water deionization. Carbohydrate Polymers, 2021, 252, 117209.	5.1	30
13	Seeking brightness from nature: Sustainable carbon dots-based AlEgens with tunable emission wavelength from natural rosin. Chemical Engineering Journal, 2021, 413, 127457.	6.6	34
14	Hydrothermal synthesis of nitrogen-doped carbon quantum dots from lignin for formaldehyde determination. RSC Advances, 2021, 11, 29178-29185.	1.7	16
15	Integrating photon up- and down-conversion to produce efficient light-harvesting materials for enhancing natural photosynthesis. Journal of Materials Chemistry A, 2021, 9, 24308-24314.	5.2	13
16	Biomass-derived tubular carbon materials: progress in synthesis and applications. Journal of Materials Chemistry A, 2021, 9, 13822-13850.	5.2	31
17	Overview of cellulose-based flexible materials for supercapacitors. Journal of Materials Chemistry A, 2021, 9, 7278-7300.	5.2	77
18	Melanin-Inspired Design: Preparing Sustainable Photothermal Materials from Lignin for Energy Generation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 7600-7607.	4.0	87

#	Article	IF	CITATIONS
19	Solar-powered nanostructured biopolymer hygroscopic aerogels for atmospheric water harvesting. Nano Energy, 2021, 80, 105569.	8.2	99
20	Distinct Sustainable Carbon Nanodots Enable Free Radical Photopolymerization, Photoâ€ATRP and Photoâ€CuAAC Chemistry. Angewandte Chemie - International Edition, 2021, 60, 10983-10991.	7.2	44
21	Verschiedene nachhaltige Kohlenstoffnanopunkte fÃ⅓r die freie radikalische Photopolymerisation, die Photoâ€ATRP und die Photoâ€CuACC Chemie. Angewandte Chemie, 2021, 133, 11078-11087.	1.6	4
22	Catalysis Preparation of Biodiesel from Waste <i>Schisandra chinensis</i> Seed Oil with the Ionic Liquid Immobilized in a Magnetic Catalyst: Fe ₃ O ₄ @SiO ₂ @[C4mim]HSO ₄ . ACS Omega, 2021, 6, 7896-7909.	1.6	14
23	Sustainable Carbon Dot-Based AlEgens: Promising Light-Harvesting Materials for Enhancing Photosynthesis. ACS Sustainable Chemistry and Engineering, 2021, 9, 4139-4145.	3.2	35
24	Rücktitelbild: Verschiedene nachhaltige Kohlenstoffnanopunkte für die freie radikalische Photopolymerisation, die Photoâ€ATRP und die Photoâ€CuACC Chemie (Angew. Chem. 19/2021). Angewandte Chemie, 2021, 133, 11096-11096.	1.6	0
25	High-Performance Supercapacitor Device with Ultrathick Electrodes Fabricated from All-Cellulose-Based Carbon Aerogel. Energy & Energy & 2021, 35, 8295-8302.	2.5	27
26	Isolating High Antimicrobial Ability Lignin From Bamboo Kraft Lignin by Organosolv Fractionation. Frontiers in Bioengineering and Biotechnology, 2021, 9, 683796.	2.0	41
27	Coating of Wood with Fe ₂ O ₃ -Decorated Carbon Nanotubes by One-Step Combustion for Efficient Solar Steam Generation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 22845-22854.	4.0	93
28	Lignin Nanoparticles: Promising Sustainable Building Blocks of Photoluminescent and Haze Films for Improving Efficiency of Solar Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 33536-33545.	4.0	13
29	Solar-powered "pump―for uranium recovery from seawater. Chemical Engineering Journal, 2021, 416, 129486.	6.6	27
30	Recent development in food emulsion stabilized by plant-based cellulose nanoparticles. Current Opinion in Colloid and Interface Science, 2021, 56, 101512.	3.4	38
31	Sensitive Mechanofluorochromic Carbon Dotâ€Based AlEgens: Promising Reporting Components for Selfâ€Sensing Plastics. Advanced Optical Materials, 2021, 9, 2101092.	3.6	14
32	Sustainable afterglow materials from lignin inspired by wood phosphorescence. Cell Reports Physical Science, 2021, 2, 100542.	2.8	21
33	Thermal-insulating, flame-retardant and mechanically resistant aerogel based on bio-inspired tubular cellulose. Composites Part B: Engineering, 2021, 220, 108997.	5.9	47
34	Hierarchical porous graphene oxide/carbon foam nanocomposites derived from larch for enhanced CO2 capture and energy storage performance. Journal of CO2 Utilization, 2021, 52, 101666.	3.3	18
35	Fluorescent thermochromic wood-based composite phase change materials based on aggregation-induced emission carbon dots for visual solar-thermal energy conversion and storage. Chemical Engineering Journal, 2021, 424, 130426.	6.6	47
36	Multi-walled carbon nanotubes/carbon foam nanocomposites derived from biomass for CO2 capture and supercapacitor applications. Fuel, 2021, 305, 121622.	3.4	30

#	Article	IF	Citations
37	Moisture-indicating cellulose aerogels for multiple atmospheric water harvesting cycles driven by solar energy. Journal of Materials Chemistry A, 2021, 9, 24650-24660.	5.2	26
38	Flexible, Electrically Conductive, Nanostructured, Asymmetric Aerogel Films for Lithium–Sulfur Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 59174-59184.	4.0	5
39	Kohlenstoffâ€Nanopunkte als Photokatalysatoren fÃ⅓r die freie radikalische und ATRPâ€basierte radikalische Photopolymerisation mit blauen LEDs. Angewandte Chemie, 2020, 132, 3192-3197.	1.6	16
40	Carbon Dots as a Promising Green Photocatalyst for Free Radical and ATRPâ€Based Radical Photopolymerization with Blue LEDs. Angewandte Chemie - International Edition, 2020, 59, 3166-3171.	7.2	95
41	Natural phenolic compound–iron complexes: sustainable solar absorbers for wood-based solar steam generation devices. RSC Advances, 2020, 10, 1152-1158.	1.7	28
42	Nitrogen and copper (II) co-doped carbon dots for applications in ascorbic acid determination by non-oxidation reduction strategy and cellular imaging. Talanta, 2020, 210, 120649.	2.9	56
43	A Dynamic Gel with Reversible and Tunable Topological Networks and Performances. Matter, 2020, 2, 390-403.	5.0	216
44	Nature-inspired design: p- toluenesulfonic acid-assisted hydrothermally engineered wood for solar steam generation. Nano Energy, 2020, 78, 105322.	8.2	61
45	Luminescent Transparent Wood Based on Lignin-Derived Carbon Dots as a Building Material for Dual-Channel, Real-Time, and Visual Detection of Formaldehyde Gas. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36628-36638.	4.0	112
46	Wood-Inspired Compressible, Mesoporous, and Multifunctional Carbon Aerogel by a Dual-Activation Strategy from Cellulose. ACS Sustainable Chemistry and Engineering, 2020, 8, 11114-11122.	3.2	31
47	ZnO nanorod arrays assembled on activated carbon fibers for photocatalytic degradation: Characteristics and synergistic effects. Chemosphere, 2020, 261, 127731.	4.2	26
48	Adsorption Separation of Cr(VI) from a Water Phase Using Multiwalled Carbon Nanotube-Immobilized lonic Liquids. ACS Omega, 2020, 5, 22827-22839.	1.6	19
49	Designing Hybrid Chiral Photonic Films with Circularly Polarized Room-Temperature Phosphorescence. ACS Nano, 2020, 14, 11130-11139.	7.3	130
50	Constructing CeO ₂ /nitrogen-doped carbon quantum dot/g-C ₃ N ₄ heterojunction photocatalysts for highly efficient visible light photocatalysis. Nanoscale, 2020, 12, 19112-19120.	2.8	43
51	Promoting the Growth of Mung Bean Plants through Uptake and Light Conversion of NaYF ₄ :Yb,Er@CDs Nanocomposites. ACS Sustainable Chemistry and Engineering, 2020, 8, 9751-9762.	3.2	40
52	Fluorescent Poly(vinyl alcohol) Films Containing Chlorogenic Acid Carbon Nanodots for Food Monitoring. ACS Applied Nano Materials, 2020, 3, 7611-7620.	2.4	23
53	Self-assembly of single-crystal ZnO nanorod arrays on flexible activated carbon fibers substrates and the superior photocatalytic degradation activity. Applied Surface Science, 2020, 513, 145878.	3.1	30
54	PVA-Coated Fluorescent Carbon Dot Nanocapsules as an Optical Amplifier for Enhanced Photosynthesis of Lettuce. ACS Sustainable Chemistry and Engineering, 2020, 8, 3938-3949.	3.2	41

#	Article	IF	Citations
55	Far-Red Carbon Dots as Efficient Light-Harvesting Agents for Enhanced Photosynthesis. ACS Applied Materials & Samp; Interfaces, 2020, 12, 21009-21019.	4.0	102
56	"Irregular―aggregation-induced emission luminogens. Coordination Chemistry Reviews, 2020, 418, 213358.	9.5	44
57	"Cellulose Spacer―Strategy: Anti-Aggregation-Caused Quenching Membrane for Mercury Ion Detection and Removal. ACS Sustainable Chemistry and Engineering, 2019, 7, 15182-15189.	3.2	25
58	Organosilane-functionalized carbon quantum dots and their applications to "on-off-on― fluorometric determination of chromate and ascorbic acid, and in white light-emitting devices. Mikrochimica Acta, 2019, 186, 516.	2.5	18
59	Deep Eutectic Solvent-Assisted In Situ Wood Delignification: A Promising Strategy To Enhance the Efficiency of Wood-Based Solar Steam Generation Devices. ACS Applied Materials & Samp; Interfaces, 2019, 11, 26032-26037.	4.0	97
60	N,S-self-doped carbon quantum dots from fungus fibers for sensing tetracyclines and for bioimaging cancer cells. Materials Science and Engineering C, 2019, 105, 110132.	3.8	132
61	Ultralight carbon aerogel with tubular structures and N-containing sandwich-like wall from kapok fibers for supercapacitor electrode materials. Journal of Power Sources, 2019, 438, 227030.	4.0	50
62	Hydrothermal synthesis of green fluorescent nitrogen doped carbon dots for the detection of nitrite and multicolor cellular imaging. Analytica Chimica Acta, 2019, 1090, 133-142.	2.6	64
63	In Situ Green Synthesis of Nitrogen-Doped Carbon-Dot-Based Room-Temperature Phosphorescent Materials for Visual Iron Ion Detection. ACS Sustainable Chemistry and Engineering, 2019, 7, 18801-18809.	3.2	52
64	Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: A review. Chemical Engineering Journal, 2019, 364, 226-243.	6.6	125
65	Biomass-derived solar-to-thermal materials: promising energy absorbers to convert light to mechanical motion. Journal of Materials Chemistry A, 2019, 7, 4002-4008.	5.2	32
66	Stimuli-responsive cellulose paper materials. Carbohydrate Polymers, 2019, 210, 350-363.	5.1	55
67	Tunable Upconverted Circularly Polarized Luminescence in Cellulose Nanocrystal Based Chiral Photonic Films. ACS Applied Materials & Interfaces, 2019, 11, 23512-23519.	4.0	79
68	Polyvinyl Alcohol/Silk Fibroin/Borax Hydrogel Ionotronics: A Highly Stretchable, Self-Healable, and Biocompatible Sensing Platform. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23632-23638.	4.0	154
69	Molecular Glue Strategy: Large-Scale Conversion of Clustering-Induced Emission Luminogen to Carbon Dots. ACS Applied Materials & Samp; Interfaces, 2019, 11, 19301-19307.	4.0	44
70	Production of Nanocellulose Using Hydrated Deep Eutectic Solvent Combined with Ultrasonic Treatment. ACS Omega, 2019, 4, 8539-8547.	1.6	112
71	Alternate Ultrasound/Microwave Digestion for Deep Eutectic Hydro-distillation Extraction of Essential Oil and Polysaccharide from Schisandra chinensis (Turcz.) Baill. Molecules, 2019, 24, 1288.	1.7	18
72	A Universal Strategy for Activating the Multicolor Roomâ€√emperature Afterglow of Carbon Dots in a Boric Acid Matrix. Angewandte Chemie - International Edition, 2019, 58, 7278-7283.	7.2	266

#	Article	IF	CITATIONS
73	Assembling semiconductor quantum dots in hierarchical photonic cellulose nanocrystal films: circularly polarized luminescent nanomaterials as optical coding labels. Journal of Materials Chemistry C, 2019, 7, 13794-13802.	2.7	79
74	Tunable Water Delivery in Carbon-Coated Fabrics for High-Efficiency Solar Vapor Generation. ACS Applied Materials & Delivery Interfaces, 2019, 11, 46938-46946.	4.0	36
75	Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines. Journal of Colloid and Interface Science, 2019, 539, 332-341.	5.0	424
76	Hierarchical porous carbon spheres derived from larch sawdust via spray pyrolysis and soft-templating method for supercapacitors. SN Applied Sciences, 2019, 1, 1.	1.5	12
77	Nanocellulose-Enabled, All-Nanofiber, High-Performance Supercapacitor. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5919-5927.	4.0	91
78	Green Extraction of Six Phenolic Compounds from Rattan (Calamoideae faberii) with Deep Eutectic Solvent by Homogenate-Assisted Vacuum-Cavitation Method. Molecules, 2019, 24, 113.	1.7	25
79	Hydrothermal synthesis of nitrogen and boron co-doped carbon quantum dots for application in acetone and dopamine sensors and multicolor cellular imaging. Sensors and Actuators B: Chemical, 2019, 281, 34-43.	4.0	119
80	Ultra-small amorphous carbon dots: preparation, photoluminescence properties, and their application as TiO2 photosensitizers. Journal of Materials Science, 2019, 54, 5280-5293.	1.7	24
81	Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chemistry, 2018, 20, 2711-2721.	4.6	323
82	Multifunctional chiral nematic cellulose nanocrystals/glycerol structural colored nanocomposites for intelligent responsive films, photonic inks and iridescent coatings. Journal of Materials Chemistry C, 2018, 6, 5391-5400.	2.7	103
83	Preparation of a Smart and Portable Film for in Situ Sensing of Iron Microcorrosion. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4981-4985.	4.0	6
84	Seeking Brightness from Nature: J-Aggregation-Induced Emission in Cellulolytic Enzyme Lignin Nanoparticles. ACS Sustainable Chemistry and Engineering, 2018, 6, 3169-3175.	3.2	80
85	Novel Quercetin Aggregationâ€Induced Emission Luminogen (AlEgen) with Excitedâ€State Intramolecular Proton Transfer for In Vivo Bioimaging. Advanced Functional Materials, 2018, 28, 1706196.	7.8	100
86	Seeking value from biomass materials: preparation of coffee bean shell-derived fluorescent carbon dots <i>via</i> molecular aggregation for antioxidation and bioimaging applications. Materials Chemistry Frontiers, 2018, 2, 1269-1275.	3.2	62
87	Naturalâ€Productâ€Derived Carbon Dots: From Natural Products to Functional Materials. ChemSusChem, 2018, 11, 11-24.	3 . 6	278
88	Enhanced Biological Photosynthetic Efficiency Using Lightâ∈Harvesting Engineering with Dualâ∈Emissive Carbon Dots. Advanced Functional Materials, 2018, 28, 1804004.	7.8	189
89	A nanocomposite probe consisting of carbon quantum dots and phosphotungstic acid for fluorometric determination of chromate(VI) with improved selectivity. Mikrochimica Acta, 2018, 185, 470.	2.5	20
90	GC-MS Study of the Chemical Components of Different Aquilaria sinensis (Lour.) Gilgorgans and Agarwood from Different Asian Countries. Molecules, 2018, 23, 2168.	1.7	20

#	Article	IF	CITATIONS
91	Highly activated porous carbon with 3D microspherical structure and hierarchical pores as greatly enhanced cathode material for high-performance supercapacitors. Journal of Power Sources, 2018, 391, 162-169.	4.0	72
92	Natural Quercetin AlEgen Composite Film with Antibacterial and Antioxidant Properties for in Situ Sensing of Al ³⁺ Residues in Food, Detecting Food Spoilage, and Extending Food Storage Times. ACS Applied Bio Materials, 2018, 1, 636-642.	2.3	39
93	Carbon spheres derived from biomass residue via ultrasonic spray pyrolysis for supercapacitors. Materials Chemistry and Physics, 2018, 219, 461-467.	2.0	20
94	High Performance, Flexible, Solidâ€State Supercapacitors Based on a Renewable and Biodegradable Mesoporous Cellulose Membrane. Advanced Energy Materials, 2017, 7, 1700739.	10.2	202
95	Preparation of Carbon Dots for Cellular Imaging by the Molecular Aggregation of Cellulolytic Enzyme Lignin. Langmuir, 2017, 33, 5786-5795.	1.6	75
96	Highly Flexible and Conductive Cellulose-Mediated PEDOT:PSS/MWCNT Composite Films for Supercapacitor Electrodes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13213-13222.	4.0	214
97	Efficient Cleavage of Lignin–Carbohydrate Complexes and Ultrafast Extraction of Lignin Oligomers from Wood Biomass by Microwaveâ€Assisted Treatment with Deep Eutectic Solvent. ChemSusChem, 2017, 10, 1692-1700.	3.6	354
98	Hydrothermal synthesis of nitrogen-doped carbon quantum dots from microcrystalline cellulose for the detection of Fe ³⁺ ions in an acidic environment. RSC Advances, 2017, 7, 44144-44153.	1.7	177
99	Efficient Cleavage of Strong Hydrogen Bonds in Cotton by Deep Eutectic Solvents and Facile Fabrication of Cellulose Nanocrystals in High Yields. ACS Sustainable Chemistry and Engineering, 2017, 5, 7623-7631.	3.2	161
100	One-step hydrothermal synthesis of fluorescent nanocrystalline cellulose/carbon dot hydrogels. Carbohydrate Polymers, 2017, 175, 7-17.	5.1	54
101	Characterization of products from hydrothermal carbonization of pine. Bioresource Technology, 2017, 244, 78-83.	4.8	72
102	Carbon nanocasting in ion-track etched polycarbonate membranes. Materials Letters, 2017, 187, 56-59.	1.3	7
103	Facile Control of the Porous Structure of Larch-Derived Mesoporous Carbons via Self-Assembly for Supercapacitors. Materials, 2017, 10, 1330.	1.3	6
104	Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials, 2016, 1, .	23.3	1,031
105	Electroless decoration of macroscale foam with nickel nano-spikes: A scalable route toward efficient catalyst electrodes. Electrochemistry Communications, 2016, 65, 39-43.	2.3	26
106	Facile fabrication of hollow and honeycomb-like carbon spheres from liquefied larch sawdust via ultrasonic spray pyrolysis. Materials Letters, 2015, 157, 135-138.	1.3	15
107	Synthesis of nickel-incorporated larch-based carbon membranes with controllable porous structure for gas separation. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	5
108	Hydrothermal carbonization of carboxymethylcellulose: One-pot preparation of conductive carbon microspheres and water-soluble fluorescent carbon nanodots. Chemical Engineering Journal, 2015, 266, 112-120.	6.6	89

SHOUXIN LIU

#	ARTICLE	IF	CITATIONS
109	Hierarchically tunable porous carbon spheres derived from larch sawdust and application for efficiently removing Cr (\hat{a} ¢) and Pb (\hat{a} ;). Materials Chemistry and Physics, 2015, 155, 52-58.	2.0	18
110	Effect of reaction temperature on properties of carbon nanodots and their visible-light photocatalytic degradation of tetracyline. RSC Advances, 2015, 5, 75711-75721.	1.7	33
111	Pentosan-derived water-soluble carbon nano dots with substantial fluorescence: Properties and application as a photosensitizer. Applied Surface Science, 2014, 315, 66-72.	3.1	31
112	An overview of the synthesis of ordered mesoporous materials. Chemical Communications, 2013, 49, 943-946.	2.2	263
113	Simple and Green Synthesis of Nitrogenâ€Doped Photoluminescent Carbonaceous Nanospheres for Bioimaging. Angewandte Chemie - International Edition, 2013, 52, 8151-8155.	7.2	430
114	A porous carbon foam prepared from liquefied birch sawdust. Journal of Materials Science, 2012, 47, 1977-1984.	1.7	34
115	Exploring the circular polarization capacity from chiral cellulose nanocrystal films for photoâ€controlled chiral helix of supramolecular polymers. Angewandte Chemie, 0, , .	1.6	2