List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2629912/publications.pdf Version: 2024-02-01

YONG YANG

#	Article	IF	CITATIONS
1	High-entropy alloy: challenges and prospects. Materials Today, 2016, 19, 349-362.	14.2	1,698
2	Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Materialia, 2013, 61, 2628-2638.	7.9	1,004
3	Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Materialia, 2017, 138, 72-82.	7.9	553
4	Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science, 2019, 104, 250-329.	32.8	428
5	Atomistic free-volume zones and inelastic deformation of metallic glasses. Nature Materials, 2010, 9, 619-623.	27.5	392
6	Atomic-size effect and solid solubility of multicomponent alloys. Scripta Materialia, 2015, 94, 28-31.	5.2	339
7	Thin film metallic glasses: Unique properties and potential applications. Thin Solid Films, 2012, 520, 5097-5122.	1.8	301
8	Complex-Surfactant-Assisted Hydrothermal Route to Ferromagnetic Nickel Nanobelts. Advanced Materials, 2003, 15, 1946-1948.	21.0	280
9	Design of high entropy alloys: A single-parameter thermodynamic rule. Scripta Materialia, 2015, 104, 53-55.	5.2	209
10	A Highly Efficient and Self‣tabilizing Metallicâ€Glass Catalyst for Electrochemical Hydrogen Generation. Advanced Materials, 2016, 28, 10293-10297.	21.0	195
11	High Sensitivity, Wearable, Piezoresistive Pressure Sensors Based on Irregular Microhump Structures and Its Applications in Body Motion Sensing. Small, 2016, 12, 3827-3836.	10.0	177
12	Machine learning guided appraisal and exploration of phase design for high entropy alloys. Npj Computational Materials, 2019, 5, .	8.7	171
13	Corrosion resistant nanostructured eutectic high entropy alloy. Corrosion Science, 2020, 164, 108315.	6.6	161
14	Matrixâ€Assisted Catalytic Printing for the Fabrication of Multiscale, Flexible, Foldable, and Stretchable Metal Conductors. Advanced Materials, 2013, 25, 3343-3350.	21.0	160
15	Unusual fast secondary relaxation in metallic glass. Nature Communications, 2015, 6, 7876.	12.8	158
16	Threeâ€Ðimensional Compressible and Stretchable Conductive Composites. Advanced Materials, 2014, 26, 810-815.	21.0	156
17	Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates. Scripta Materialia, 2018, 148, 51-55.	5.2	154
18	The dependence of shear modulus on dynamic relaxation and evolution of local structural heterogeneity in a metallic glass. Acta Materialia, 2013, 61, 4329-4338.	7.9	141

#	Article	IF	CITATIONS
19	A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Acta Materialia, 2015, 94, 152-161.	7.9	141
20	High Entropy Intermetallic–Oxide Core–Shell Nanostructure as Superb Oxygen Evolution Reaction Catalyst. Advanced Sustainable Systems, 2020, 4, 1900105.	5.3	129
21	Atomic-size and lattice-distortion effects in newly developed high-entropy alloys with multiple principal elements. Intermetallics, 2015, 64, 63-69.	3.9	127
22	Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses. Materials Today, 2017, 20, 293-300.	14.2	114
23	The generalized thermodynamic rule for phase selection in multicomponent alloys. Intermetallics, 2015, 59, 75-80.	3.9	108
24	Fractal growth of the dense-packing phase in annealed metallic glass imaged by high-resolution atomic force microscopy. Acta Materialia, 2012, 60, 5260-5272.	7.9	105
25	On Lattice Distortion in High Entropy Alloys. Frontiers in Materials, 2018, 5, .	2.4	103
26	On the source of plastic flow in metallic glasses: Concepts and models. Intermetallics, 2015, 67, 81-86.	3.9	99
27	Biomimicking Topographic Elastomeric Petals (Eâ€Petals) for Omnidirectional Stretchable and Printable Electronics. Advanced Science, 2015, 2, 1400021.	11.2	96
28	Atomic-Scale Structural Evolution and Stability of Supercooled Liquid of a Zr-Based Bulk Metallic Glass. Physical Review Letters, 2011, 106, 215505.	7.8	93
29	Atomic-scale distorted lattice in chemically disordered equimolar complex alloys. Acta Materialia, 2018, 150, 182-194.	7.9	89
30	Revealing the structural heterogeneity of metallic glass: Mechanical spectroscopy and nanoindentation experiments. International Journal of Mechanical Sciences, 2021, 201, 106469.	6.7	89
31	Amorphous–nanocrystalline alloys: fabrication, properties, and applications. Materials Today Advances, 2019, 4, 100027.	5.2	88
32	Fast surface dynamics enabled cold joining of metallic glasses. Science Advances, 2019, 5, eaax7256.	10.3	87
33	Superb strength and high plasticity in laves phase rich eutectic medium-entropy-alloy nanocomposites. International Journal of Plasticity, 2018, 106, 57-72.	8.8	86
34	Size effect on stability of shear-band propagation in bulk metallic glasses: an overview. Journal of Materials Science, 2012, 47, 55-67.	3.7	77
35	Superior Tensile Ductility in Bulk Metallic Glass with Gradient Amorphous Structure. Scientific Reports, 2014, 4, 4757.	3.3	77
36	A highly distorted ultraelastic chemically complex Elinvar alloy. Nature, 2022, 602, 251-257.	27.8	75

#	Article	IF	CITATIONS
37	Aerosol Synthesis of High Entropy Alloy Nanoparticles. Langmuir, 2020, 36, 1985-1992.	3.5	74
38	<i>In Situ</i> Oxidation Studies of High-Entropy Alloy Nanoparticles. ACS Nano, 2020, 14, 15131-15143.	14.6	71
39	Effects of specimen geometry and base material on the mechanical behavior of focused-ion-beam-fabricated metallic-glass micropillars. Acta Materialia, 2009, 57, 1613-1623.	7.9	70
40	The atomic-scale mechanism for the enhanced glass-forming-ability of a Cu-Zr based bulk metallic glass with minor element additions. Scientific Reports, 2014, 4, 4648.	3.3	70
41	Micromechanical characterization of casting-induced inhomogeneity in an Al0.8CoCrCuFeNi high-entropy alloy. Scripta Materialia, 2011, 64, 868-871.	5.2	69
42	Machine learning-based glass formation prediction in multicomponent alloys. Acta Materialia, 2020, 201, 182-190.	7.9	69
43	Transformation-mediated plasticity in CuZr based metallic glass composites: A quantitative mechanistic understanding. International Journal of Plasticity, 2016, 85, 34-51.	8.8	68
44	Design of High-Entropy Alloy: A Perspective from Nonideal Mixing. Jom, 2017, 69, 2092-2098.	1.9	66
45	Ultrathin two-dimensional metallic nanocrystals for renewable energy electrocatalysis. Materials Today, 2019, 23, 45-56.	14.2	64
46	Yielding and shear banding of metallic glasses. Acta Materialia, 2013, 61, 5928-5936.	7.9	62
47	Mechanisms of fatigue in LIGA Ni MEMS thin films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 444, 39-50.	5.6	60
48	Ultrafast synthesis of entropy-stabilized oxide at room temperature. Journal of the European Ceramic Society, 2020, 40, 2504-2508.	5.7	60
49	Structure Heterogeneity in Metallic Glass: Modeling and Experiment. Journal of Materials Science and Technology, 2014, 30, 560-565.	10.7	55
50	Effect of size and base-element on the jerky flow dynamics in metallic glass. Acta Materialia, 2014, 63, 180-190.	7.9	54
51	High performance Fe-based nanocrystalline alloys with excellent thermal stability. Journal of Alloys and Compounds, 2019, 776, 606-613.	5.5	52
52	Understanding chemical short-range ordering/demixing coupled with lattice distortion in solid solution high entropy alloys. Acta Materialia, 2021, 216, 117140.	7.9	52
53	Extraction of bulk metallic-glass yield strengths using tapered micropillars in micro-compression experiments. Intermetallics, 2010, 18, 385-393.	3.9	51
54	Amorphous physics and materials: Secondary relaxation and dynamic heterogeneity in metallic glasses: A brief review. Chinese Physics B, 2017, 26, 016402.	1.4	51

#	Article	IF	CITATIONS
55	Pressure effects on structure and dynamics of metallic glass-forming liquid. Journal of Chemical Physics, 2017, 146, 024507.	3.0	49
56	Study of the intrinsic ductile to brittle transition mechanism of metallic glasses. Acta Materialia, 2009, 57, 6037-6046.	7.9	48
57	Saturated magnetization and glass forming ability of soft magnetic Fe-based metallic glasses. Intermetallics, 2017, 84, 74-81.	3.9	48
58	Nanoindentation characterized initial creep behavior of a high-entropy-based alloy CoFeNi. Intermetallics, 2014, 53, 183-186.	3.9	47
59	<i>In situ</i> mechanical characterization of CoCrCuFeNi high-entropy alloy micro/nano-pillars for their size-dependent mechanical behavior. Materials Research Express, 2016, 3, 094002.	1.6	47
60	Elemental segregation in solid-solution high-entropy alloys: Experiments and modeling. Journal of Alloys and Compounds, 2016, 681, 167-174.	5.5	46
61	Hardness, yield strength, and plastic flow in thin film metallic-glass. Journal of Applied Physics, 2012, 112, .	2.5	43
62	Formation of Random Solid Solution in Multicomponent Alloys: from Hume-Rothery Rules to Entropic Stabilization. Journal of Phase Equilibria and Diffusion, 2017, 38, 416-425.	1.4	43
63	Configuration correlation governs slow dynamics of supercooled metallic liquids. Proceedings of the United States of America, 2018, 115, 6375-6380.	7.1	43
64	Stability and synthesis of 2D metals and alloys: a review. Materials Today Advances, 2020, 8, 100092.	5.2	43
65	Interface modulation of twinned PtFe nanoplates branched 3D architecture for oxygen reduction catalysis. Science Bulletin, 2020, 65, 97-104.	9.0	42
66	Correlation between local elastic heterogeneities and overall elastic properties in metallic glasses. Acta Materialia, 2016, 121, 266-276.	7.9	41
67	Tuning the microstructure for superb corrosion resistance in eutectic high entropy alloy. Journal of Materials Science and Technology, 2022, 109, 197-208.	10.7	41
68	Fatigue and Fracture of a Bulk Nanocrystalline NiFe Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 1145-1156.	2.2	40
69	Unveiling atomic-scale features of inherent heterogeneity in metallic glass by molecular dynamics simulations. Physical Review B, 2016, 93, .	3.2	39
70	Exploring the design of eutectic or near-eutectic multicomponent alloys: From binary to high entropy alloys. Science China Technological Sciences, 2018, 61, 159-167.	4.0	39
71	Phase field study of the copper precipitation in Fe-Cu alloy. Acta Materialia, 2019, 166, 560-571.	7.9	39
72	Mechanical Switching of Nanoscale Multiferroic Phase Boundaries. Advanced Functional Materials, 2015, 25, 3405-3413.	14.9	38

#	Article	IF	CITATIONS
73	Hierarchical Eutectic Structure Enabling Superior Fracture Toughness and Superb Strength in CoCrFeNiNb0.5 Eutectic High Entropy Alloy at Room Temperature. Advanced Engineering Materials, 2019, 21, 1801060.	3.5	38
74	Fracture of sigma phase containing Co–Cr–Ni–Mo medium entropy alloys. Journal of Alloys and Compounds, 2020, 846, 156189.	5.5	38
75	Polymer Pen Lithography Using Dualâ€Elastomer Tip Arrays. Small, 2012, 8, 2664-2669.	10.0	37
76	Cooling rate effect on Young's modulus and hardness of a Zr-based metallic glass. Journal of Alloys and Compounds, 2011, 509, 3269-3273.	5.5	36
77	Softening-induced plastic flow instability and indentation size effect in metallic glass. Journal of the Mechanics and Physics of Solids, 2015, 77, 70-85.	4.8	36
78	The configurational entropy of mixing of metastable random solid solution in complex multicomponent alloys. Journal of Applied Physics, 2016, 120, .	2.5	36
79	Density fluctuations with fractal order in metallic glasses detected by synchrotron X-ray nano-computed tomography. Acta Materialia, 2018, 155, 69-79.	7.9	35
80	Effect of surface modifications on shear banding and plasticity in metallic glasses: An overview. Progress in Natural Science: Materials International, 2012, 22, 355-363.	4.4	33
81	Intrinsic versus extrinsic effects on serrated flow of bulk metallic glasses. Intermetallics, 2015, 66, 31-39.	3.9	33
82	Abnormal internal friction in the in-situ Ti60Zr15V10Cu5Be10 metallic glass matrix composite. Journal of Alloys and Compounds, 2017, 724, 921-931.	5.5	33
83	Micromechanical mechanism of yielding in dual nano-phase metallic glass. Scripta Materialia, 2018, 154, 186-191.	5.2	32
84	Structural inhomogeneity and anelastic deformation in metallic glasses revealed by spherical nanoindentation. Applied Physics Letters, 2010, 97, .	3.3	31
85	Characteristic length scales governing plasticity/brittleness of bulk metallic glasses at ambient temperature. Applied Physics Letters, 2010, 96, 011905.	3.3	31
86	Chemical fluctuation enabling strength-plasticity synergy in metastable single-phase high entropy alloy film with gigapascal yield strength. International Journal of Plasticity, 2021, 139, 102951.	8.8	31
87	Contact deformation and cracking of zirconia/cement/foundation dental multilayers. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 485, 517-523.	5.6	30
88	Energy-Based Modeling Approach for Debonding of FRP Plate from Concrete Substrate. Journal of Engineering Mechanics - ASCE, 2006, 132, 583-593.	2.9	29
89	A hierarchically correlated flow defect model for metallic glass: Universal understanding of stress relaxation and creep. International Journal of Plasticity, 2022, 154, 103288.	8.8	29
90	Size effect in microcompression of epoxy micropillars. Journal of Materials Science, 2012, 47, 6047-6055.	3.7	27

#	Article	IF	CITATIONS
91	Heterogeneous lattice strain strengthening in severely distorted crystalline solids. Proceedings of the United States of America, 2022, 119, .	7.1	27
92	Revealing High-Temperature Reduction Dynamics of High-Entropy Alloy Nanoparticles <i>via In Situ</i> Transmission Electron Microscopy. Nano Letters, 2021, 21, 1742-1748.	9.1	26
93	Metallic glasses: Gaining plasticity for microsystems. Jom, 2010, 62, 93-98.	1.9	25
94	The stochastic transition from size dependent to size independent yield strength in metallic glasses. Journal of the Mechanics and Physics of Solids, 2017, 109, 200-216.	4.8	24
95	On the use of atomic force microscopy for structural mapping of metallic-glass thin films. Intermetallics, 2014, 44, 121-127.	3.9	23
96	Atomistic mechanism of elastic softening in metallic glass under cyclic loading revealed by molecular dynamics simulations. Intermetallics, 2016, 68, 5-10.	3.9	23
97	Mutual interaction of shear bands in metallic glasses. Intermetallics, 2017, 85, 48-53.	3.9	23
98	Fast secondary relaxation and plasticity initiation in metallic glasses. National Science Review, 2018, 5, 616-618.	9.5	23
99	Revealing the ultra-low-temperature relaxation peak in a model metallic glass. Acta Materialia, 2020, 195, 611-620.	7.9	23
100	The controlled large-area synthesis of two dimensional metals. Materials Today, 2020, 36, 30-39.	14.2	23
101	A mean-field model for anelastic deformation in metallic-glasses. Intermetallics, 2012, 26, 86-90.	3.9	22
102	The general effect of atomic size misfit on glass formation in conventional and high-entropy alloys. Intermetallics, 2016, 78, 30-41.	3.9	22
103	Heterostructured crystallization mechanism and its effect on enlarging the processing window of Fe-based nanocrystalline alloys. Journal of Materials Science and Technology, 2021, 68, 53-60.	10.7	22
104	Structural Signature of Plasticity Unveiled by Nano-Scale Viscoelastic Contact in a Metallic Glass. Scientific Reports, 2016, 6, 29357.	3.3	21
105	Hand in hand evolution of boson heat capacity anomaly and slow β-relaxation in La-based metallic glasses. Acta Materialia, 2016, 110, 73-83.	7.9	21
106	Evading brittle fracture in submicron-sized high entropy intermetallics in dual-phase eutectic microstructure. Scripta Materialia, 2020, 187, 280-284.	5.2	21
107	Nanoscale Structural Evolution and Anomalous Mechanical Response of Nanoglasses by Cryogenic Thermal Cycling. Nano Letters, 2018, 18, 4188-4194.	9.1	20
108	Deformation and fracture in micro-tensile tests of freestanding electrodeposited nickel thin films. Scripta Materialia, 2008, 58, 1062-1065.	5.2	19

#	Article	IF	CITATIONS
109	Common mechanism for controlling polymorph selection during crystallization in supercooled metallic liquids. Acta Materialia, 2018, 161, 367-373.	7.9	19
110	High-entropy intermetallics: from alloy design to structural and functional properties. Rare Metals, 2022, 41, 1989-2001.	7.1	19
111	Revelation of the effect of structural heterogeneity on microplasticity in bulk metallic-glasses. Journal of Materials Research, 2010, 25, 563-575.	2.6	18
112	Thermodynamic scaling of glassy dynamics and dynamic heterogeneities in metallic glass-forming liquid. Journal of Chemical Physics, 2016, 145, 104503.	3.0	18
113	The Critical Criterion on Runaway Shear Banding in Metallic Glasses. Scientific Reports, 2016, 6, 21388.	3.3	18
114	A high-entropy alloy as very low melting point solder for advanced electronic packaging. Materials Today Advances, 2020, 7, 100101.	5.2	18
115	Synthesis of Twoâ€dimensional Metallic Nanosheets: From Elemental Metals to Chemically Complex Alloys. ChemNanoMat, 2020, 6, 1683-1711.	2.8	18
116	Recent development of chemically complex metallic glasses: from accelerated compositional design, additive manufacturing to novel applications. Materials Futures, 2022, 1, 012001.	8.4	18
117	Mixed mode fracture of dental interfaces. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 488, 381-388.	5.6	17
118	Understanding yielding and the unusual ductile-brittle-ductile transition in Fe-based amorphous nanocrystalline alloy: A combined micromechanical and thermodynamic study. Journal of the Mechanics and Physics of Solids, 2019, 132, 103681.	4.8	17
119	Rational design of chemically complex metallic glasses by hybrid modeling guided machine learning. Npj Computational Materials, 2021, 7, .	8.7	17
120	Delayed shear banding and evolution of local plastic flow in a metallic glass. Applied Physics Letters, 2014, 105, .	3.3	16
121	"Softness―as the structural origin of plasticity in disordered solids: a quantitative insight from machine learning. Science China Materials, 2019, 62, 154-160.	6.3	16
122	Nanoscale and submicron fatigue crack growth in nickel microbeams. Acta Materialia, 2007, 55, 4305-4315.	7.9	15
123	Replication of nano/micro-scale features using bulk metallic glass mold prepared by femtosecond laser and imprint processes. Journal of Micromechanics and Microengineering, 2013, 23, 035030.	2.6	15
124	Shear-banding Induced Indentation Size Effect in Metallic Glasses. Scientific Reports, 2016, 6, 28523.	3.3	15
125	Ultrasonic plasticity of metallic glass near room temperature. Applied Materials Today, 2020, 21, 100866.	4.3	15
126	Resonance ultrasonic actuation and local structural rejuvenation in metallic glasses. Physical Review B, 2017, 95, .	3.2	14

#	Article	IF	CITATIONS
127	Low-Cost Scalable Production of Freestanding Two-Dimensional Metallic Nanosheets by Polymer Surface Buckling Enabled Exfoliation. Cell Reports Physical Science, 2020, 1, 100235.	5.6	14
128	Probing Stochastic Nano-Scale Inelastic Events in Stressed Amorphous Metal. Scientific Reports, 2014, 4, 6699.	3.3	13
129	Structural heterogeneity and deformation rheology in metallic glasses. Science China Technological Sciences, 2015, 58, 47-55.	4.0	13
130	<i>In-situ</i> atomic force microscopy observation revealing gel-like plasticity on a metallic glass surface. Journal of Applied Physics, 2017, 121, .	2.5	13
131	Grain refinement mechanism of soft-magnetic alloys with nanocrystals embedded in amorphous matrix. Journal of Materials Research and Technology, 2020, 9, 3558-3565.	5.8	13
132	Strong, Ductile, and Tough Nanocrystal-Assembled Freestanding Gold Nanosheets. Nano Letters, 2022, 22, 822-829.	9.1	13
133	Size-affected shear-band speed in bulk metallic glasses. Applied Physics Letters, 2011, 99, 171904.	3.3	12
134	Influence of short- to medium-range electronic and atomic structure on secondary relaxations in metallic glasses. Acta Materialia, 2020, 196, 88-100.	7.9	12
135	Can Young's modulus and hardness of wire structural materials be directly measured using nanoindentation?. Journal of Materials Research, 2009, 24, 1054-1058.	2.6	11
136	Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating. Scientific Reports, 2016, 6, 27852.	3.3	11
137	Rate Dependence of Serrated Flow and Its Effect on Shear Stability of Bulk Metallic Glasses. Journal of Iron and Steel Research International, 2016, 23, 24-30.	2.8	11
138	Delayed plasticity during nanoindentation of single-phase CoCrFeMnNi high-entropy alloy. Materials Research Letters, 2017, 5, 300-305.	8.7	11
139	Revealing the microstructural evolution and mechanism during the thermomechanical treatment of polycrystalline CrCoNi medium-entropy alloy. Journal of Alloys and Compounds, 2021, 870, 159518.	5.5	11
140	Unveiling the atomic-scale origins of high damage tolerance of single-crystal high entropy alloys. Physical Review Materials, 2020, 4, .	2.4	11
141	Sluggish dynamics of homogeneous flow in high-entropy metallic glasses. Scripta Materialia, 2022, 214, 114673.	5.2	11
142	Fatigue of LIGA Ni Micro-Electro-Mechanical System Thin Films. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 2340-2348.	2.2	10
143	Origin of yielding in metallic glass: Stress-induced flow. Applied Physics Letters, 2014, 104, 251901.	3.3	10
144	Facile and generalized encapsulations of inorganic nanocrystals with nitrogen-doped carbonaceous coating for multifunctionality. Nanoscale, 2015, 7, 3254-3262.	5.6	10

#	Article	IF	CITATIONS
145	Dual character of stable shear banding in bulk metallic glasses. Intermetallics, 2011, 19, 1005-1013.	3.9	9
146	The mechanism of shear-band blocking in monolithic metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 703, 162-166.	5.6	9
147	Strengthening mechanism of CrCoNi medium-entropy alloy from the partially recrystallized structure to the fully recrystallized heterogeneous structure. Materials Characterization, 2022, 186, 111795.	4.4	9
148	Stress induced atomic-scale damage and relaxation in bulk metallic glasses. Journal of Alloys and Compounds, 2015, 652, 185-190.	5.5	8
149	The kinetic origin of delayed yielding in metallic glasses. Applied Physics Letters, 2016, 108, 251901.	3.3	8
150	Fracto-emission in lanthanum-based metallic glass microwires under quasi-static tensile loading. Journal of Applied Physics, 2016, 119, .	2.5	8
151	Bio-mimic Ti–Ta composite with hierarchical "Brick-and-Mortar―microstructure. Materialia, 2019, 8, 100463.	2.7	8
152	Two-Tier Compatibility of Superelastic Bicrystal Micropillar at Grain Boundary. Nano Letters, 2020, 20, 8332-8338.	9.1	8
153	Soft-Mode Parameter as an Indicator for the Activation Energy Spectra in Metallic Glass. Journal of Physical Chemistry Letters, 2020, 11, 2781-2787.	4.6	8
154	Role of oxide thickening in fatigue crack initiation in LIGA nickel MEMS thin films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 561, 434-440.	5.6	7
155	The breakdown of strength size scaling in spherical nanoindentation and microcompression of metallic glasses. Scripta Materialia, 2017, 130, 283-287.	5.2	7
156	Co-optimizing magnetic properties and thermal stability of high Bs nanocrystalline alloys with critical formability. Journal of Magnetism and Magnetic Materials, 2019, 487, 165310.	2.3	7
157	In Situ Micromechanical Characterization of Metallic Glass Microwires under Torsional Loading. Experimental Mechanics, 2019, 59, 361-368.	2.0	7
158	Effect of adding Ag to the medium entropy SnBiIn alloy on intermetallic compound formation. Materials Letters, 2020, 272, 127891.	2.6	7
159	Chemical-element-distribution-mediated deformation partitioning and its control mechanical behavior in high-entropy alloys. Journal of Materials Science and Technology, 2022, 120, 99-107.	10.7	7
160	The thermal history effect on shear band initiation in metallic glass. Journal of Applied Physics, 2016, 119, 245113.	2.5	6
161	Critical Shear Offset of Fracture in a Zr-based Metallic Glass. Journal of Iron and Steel Research International, 2016, 23, 53-56.	2.8	6
162	Chemical independent relaxation in metallic glasses from the nanoindentation experiments. Journal of Applied Physics, 2017, 121, 245104.	2.5	6

#	Article	IF	CITATIONS
163	Tunable elastic heterogeneity caused by deformation-induced magnetization in flexible metallic glass. Scripta Materialia, 2017, 130, 7-11.	5.2	6
164	Effects of sample geometry on deformation modes of bulk metallic glasses at the nano/micrometer scale. Journal of Materials Research, 2009, 24, 3465-3468.	2.6	5
165	Development of a Micro-beam Method to Investigate the Fatigue Crack Growth Mechanisms of Submicron-scale Cracks. Experimental Mechanics, 2009, 49, 731-742.	2.0	5
166	Unusual vortex-like atomic motion observed for viscoelasticity in metallic glass. Computational Materials Science, 2018, 155, 104-111.	3.0	5
167	Fabrication of strong yet malleable bulk porous high entropy laves intermetallics via chemical immersion dealloying of eutectic high entropy alloys. Scripta Materialia, 2022, 219, 114859.	5.2	5
168	An Experimental Study of Fracture of LIGA Ni Micro-Electro-Mechanical Systems Thin Films. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 1223-1230.	2.2	4
169	Self-Constructed micro-origami of 2D metal. Applied Materials Today, 2021, 23, 101039.	4.3	4
170	Etching-Free Ultrafast Fabrication of Self-Rolled Metallic Nanosheets with Controllable Twisting. Nano Letters, 2021, 21, 7159-7165.	9.1	4
171	Machine learning atomic dynamics to unfold the origin of plasticity in metallic glasses: From thermo- to acousto-plastic flow. Science China Materials, 2022, 65, 1952-1962.	6.3	4
172	Microstructure and corrosion performance of Al _{0.5} FeCoNiCrMn coating prepared by plasma spraying mechanically alloyed powders. Surface Engineering, 2022, 38, 383-392.	2.2	4
173	Derived crystal structure of martensitic materials by solid–solid phase transformation. Acta Crystallographica Section A: Foundations and Advances, 2020, 76, 521-533.	0.1	3
174	Transformation of Freestanding Carbon-Containing Gold Nanosheets into Au Nanoparticles Encapsulated within Amorphous Carbon: Implications for Surface Modification of Complex-Shaped Materials and Structures. ACS Applied Nano Materials, 2021, 4, 5098-5105.	5.0	3
175	3D architected temperature-tolerant organohydrogels with ultra-tunable energy absorption. IScience, 2021, 24, 102789.	4.1	3
176	Liquefaction-induced plasticity from entropy-boosted amorphous ceramics. Applied Materials Today, 2021, 23, 101011.	4.3	3
177	Elastoâ€Capillary Manipulation of Freestanding Inorganic Nanosheets: An Implication for Nanoâ€Manufacturing of Lowâ€Dimensional Structures. Advanced Materials Interfaces, 2022, 9, .	3.7	3
178	Controlled synthesis of nanostructured glassy and crystalline high entropy alloy films. Nanotechnology, 2020, 31, 045601.	2.6	2
179	Fast mobility induced self-lubrication at metallic glass surface. Journal of Applied Physics, 2021, 129, .	2.5	2
180	Tuning AC magnetic properties of FeCoNi1+Cu1-Al (0Ââ‰ÂxÂâ‰Â1.0) high-entropy alloys by adjusting Ni and (content. Journal of Alloys and Compounds, 2022, 922, 166174.	Cu _{5.5}	2

#	Article	IF	CITATIONS
181	The Microstructure and Mechanical Property of the High Entropy Alloy as a low Temperature Solder. , 2019, , .		1
182	Exceptionally shear-stable and ultra-strong Ir-Ni-Ta high-temperature metallic glasses at micro/nano scales. Science China Materials, 0, , 1.	6.3	0
183	Influence of magnetic interaction on configurational-entropy-suppressed <i>β</i> -relaxations in FeNi-based metallic glasses. AIP Advances, 2022, 12, 065304.	1.3	0