Jianwei Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2629821/publications.pdf

Version: 2024-02-01

		567281	642732
47	687	15	23
papers	citations	h-index	23 g-index
56	56	56	658
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	MOF-Derived Cu@N-C Catalyst for 1,3-Dipolar Cycloaddition Reaction. Nanomaterials, 2022, 12, 1070.	4.1	13
2	lodineâ€Promoted Tandem Pyrazole Annulation and Câ^'H Sulfenylation for the Synthesis of C4â€Sulfenylated Pyrazoles. European Journal of Organic Chemistry, 2022, 2022, .	2.4	3
3	MOF-253 immobilized Pd and Cu as recyclable and efficient green catalysts for Sonogashira reaction. Arabian Journal of Chemistry, 2022, 15, 103962.	4.9	5
4	Transition metal-free NaOH-catalyzed hydration of nitriles to primary amides in NH3·H2O–DMSO mixture. Molecular Diversity, 2021, 25, 1131-1136.	3.9	6
5	Nitrogen-Modified Activated Carbon Supported Cu(II)Cu(I)/NAC Catalysts for Gas–Solid Acetylene Dimerization. Catalysis Letters, 2021, 151, 2990-2995.	2.6	7
6	Copper pyrithione (CuPT)-catalyzed/mediated amination and thioarylation of (hetero)aryl halides: A competition. Molecular Catalysis, 2021, 516, 111981.	2.0	5
7	A novel risedronic acid-modified Nieuwland catalyst for acetylene dimerization. Catalysis Communications, 2020, 136, 105922.	3.3	7
8	Copper quinolate: A simple and efficient catalytic complex for coupling reactions. Applied Organometallic Chemistry, 2020, 34, e5303.	3.5	6
9	Hydrazinylbenzenesulfonic Acid-Modified Nieuwland Catalyst for Acetylene Dimerization Reaction. Catalysis Letters, 2020, 150, 1766-1773.	2.6	5
10	Cu(II)Cu(I)/AC Catalysts for Gas–Solid Acetylene Dimerization. Industrial & Engineering Chemistry Research, 2020, 59, 110-117.	3.7	10
11	1,10â€Phenanthroline: A versatile ligand to promote copperâ€catalyzed cascade reactions. Applied Organometallic Chemistry, 2020, 34, e5926.	3.5	13
12	Gas–solid acetylene dimerization over copper-based catalysts. New Journal of Chemistry, 2019, 43, 13608-13615.	2.8	13
13	Commercial drug norfloxacin as a novel ligand for the copperâ€catalyzed Nâ€arylation of imidazole with aryl halides. Applied Organometallic Chemistry, 2019, 33, e5195.	3.5	10
14	Additive Effects on Copper atalyzed Tandem Reactions. Asian Journal of Organic Chemistry, 2019, 8, 755-766.	2.7	8
15	Research Progress in Ligand-Assisted Copper-Catalyzed C-N Cross-Coupling Reaction in Aqueous Media or Pure Water. Chinese Journal of Organic Chemistry, 2019, 39, 3026.	1.3	11
16	2,6-Bis(2-methylhydrazine-1-carbonyl)pyridine 1-oxide as an Efficient Ligand for Copper-Catalyzed C–N Coupling Reaction in Water. Catalysis Letters, 2018, 148, 1142-1149.	2.6	9
17	Effects of Coordination Ability of Nitrogen-Containing Carboxylic Acid Ligands on Nieuwland Catalyst. Catalysts, 2018, 8, 337.	3.5	14
18	Heterogeneous Amorphous Cu–MOFâ€₹4 Catalyst for Câ€N Coupling Reaction. ChemistrySelect, 2018, 3, 10694-10700.	1.5	17

#	Article	IF	CITATIONS
19	Cu ₂ O/Cs ₂ CO ₃ /DMF: An efficient catalytic system for <i>N</i> -arylation of imidazole with aryl halides under ligand-free conditions. Synthetic Communications, 2017, 47, 1797-1803.	2.1	7
20	Water-soluble (salicyladimine) < sub > 2 < /sub > Cu complex as an efficient and renewable catalyst for Michael addition of indoles to nitroolefins in water. Synthetic Communications, 2017, 47, 211-216.	2.1	3
21	Effect of Iminodiacetic Acid-Modified Nieuwland Catalyst on the Acetylene Dimerization Reaction. Catalysts, 2017, 7, 394.	3.5	17
22	Study on the Synthesis and Anti-tumor Activities of Rhein-Amino Acid Conjugates. Chinese Journal of Organic Chemistry, 2017, 37, 122.	1.3	0
23	Effect of Cu+/Cu2+ Ratio on the Catalytic Behavior of Anhydrous Nieuwland Catalyst during Dimerization of Acetylene. Catalysts, 2016, 6, 120.	3.5	38
24	Oneâ€Pot Synthesis of Triarylmethanes via Metalâ€Free Reductive Coupling of Diaryl Ketones, Tosylhydrazide, and Arylboronic Acids. Chinese Journal of Chemistry, 2016, 34, 1033-1038.	4.9	22
25	Synthesis of Unsymmetrical 1,3â€Diynes via Pd/Cuâ€Catalyzed Crossâ€Coupling of Terminal Alkynes at Room Temperature. Chinese Journal of Chemistry, 2016, 34, 895-900.	4.9	5
26	Efficient and recyclable copper-based MOF-catalyzed N-arylation of N-containing heterocycles with aryliodides. Organic and Biomolecular Chemistry, 2016, 14, 10861-10865.	2.8	30
27	Efficient Synthesis of 3-Substituted Indoles via a Base-Free Copper-Catalysed Three-Component Reaction in Water. Journal of Chemical Research, 2016, 40, 338-340.	1.3	5
28	3â€(Diphenylphosphino)propanoic acid: an efficient ligand for the Pd/Cu atalyzed homo oupling of terminal alkynes in the presence of oxygen at room temperature. Applied Organometallic Chemistry, 2015, 29, 736-738.	3.5	8
29	Efficient Copperâ€Catalyzed Annulation of 2â€Formylazoles with 2â€Haloanilines for the Synthesis of Pyrrole†and Imidazoleâ€Fused Quinoxalines. Chinese Journal of Chemistry, 2015, 33, 589-593.	4.9	18
30	Oneâ€pot synthesis of polyfluoroterphenyls via palladiumâ€catalyzed Suzuki–Miyaura coupling of chlorobromobenzene and CH bond functionalization of perfluoroarenes. Applied Organometallic Chemistry, 2015, 29, 50-56.	3.5	4
31	An Efficient Copperâ€Catalyzed Oneâ€Pot Synthesis of 1â€Arylâ€1,2,3â€triazoles from Arylboronic Acids in Wate under Mild Conditions. Chinese Journal of Chemistry, 2015, 33, 1317-1320.	er 4.9	14
32	A simple and efficient synthesis of 9-arylfluorenes via metal-free reductive coupling of arylboronic acids and N-tosylhydrazones in situ. RSC Advances, 2015, 5, 63726-63731.	3.6	32
33	A simple and efficient 2N2O–Cu(II) complex as a catalyst for Nâ€arylation of imidazoles in water. Applied Organometallic Chemistry, 2015, 29, 468-470.	3.5	9
34	2-Pyrrolecarbaldiminato–Cu(<scp>ii</scp>) complex catalyzed three-component 1,3-dipolar cycloaddition for 1,4-disubstituted 1,2,3-triazoles synthesis in water at room temperature. RSC Advances, 2015, 5, 6661-6665.	3.6	33
35	Copper-catalysed <i>N</i> -arylation of Pyrrole with Aryl Iodides Under Ligand-free Conditions. Journal of Chemical Research, 2014, 38, 180-182.	1.3	8
36	Palladium atalyzed direct arylation of polyfluoroarene and facile synthesis of liquid crystal compounds. Applied Organometallic Chemistry, 2014, 28, 180-185.	3.5	12

#	Article	IF	CITATIONS
37	Copper-catalysed intramolecular O-arylation: a simple and efficient method for benzoxazole synthesis. Organic and Biomolecular Chemistry, 2014, 12, 9696-9701.	2.8	32
38	Metallomicelles of palladium(II) complexes as efficient catalysts for the Suzuki–Miyaura reaction in neat water. Applied Organometallic Chemistry, 2013, 27, 494-498.	3 . 5	14
39	A rapid and efficient catalysis system for the synthesis of 4â€vinylbiphenyl derivatives. Applied Organometallic Chemistry, 2013, 27, 707-710.	3 . 5	6
40	A Simple and Efficient Copper(II) Complex as a Catalyst for <i>N</i> â€Arylation of Imidazoles. Chinese Journal of Chemistry, 2013, 31, 267-270.	4.9	15
41	Cul/PPh ₃ /PEG–Water: An Efficient Catalytic System for Cross-Coupling Reaction of Aryl lodides and Alkynes. Synthetic Communications, 2011, 41, 3123-3133.	2.1	21
42	A Highly Versatile Catalytic System for <i>N</i> â€Arylation of Amines with Aryl Chlorides in Water. European Journal of Organic Chemistry, 2011, 2011, 4523-4527.	2.4	30
43	N2,N2′-disubstituted oxalic acid bishydrazides: novel ligands for copper-catalyzed CN coupling reactions in water. Applied Organometallic Chemistry, 2011, 25, 341-347.	3 . 5	15
44	Pyrrolo[2,3-c]azepine derivatives: A new class of potent protein tyrosine phosphatase 1B inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4306-4309.	2.2	23
45	Pyrroleâ€2â€carbohydrazides as Ligands for Cuâ€Catalyzed Amination of Aryl Halides with Amines in Pure Water. European Journal of Organic Chemistry, 2010, 2010, 3219-3223.	2.4	46
46	Efficient Copperâ€Catalyzed Direct Amination of Aryl Halides Using Aqueous Ammonia in Water. European Journal of Organic Chemistry, 2010, 2010, 6149-6152.	2.4	43
47	Sc(OTf) ₃ : A Highly Efficient and Renewable Catalyst for Michael Addition of Indoles to Nitroolefins in Water. Synthetic Communications, 2010, 40, 3259-3267.	2.1	15