
Victoria A Nikitina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2629669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metalâ€lon Coupled Electron Transfer Kinetics in Intercalationâ€Based Transition Metal Oxides. Advanced Energy Materials, 2020, 10, 1903933.	19.5	59
2	Transport and Kinetic Aspects of Alkali Metal Ions Intercalation into AVPO ₄ F Framework. Journal of the Electrochemical Society, 2017, 164, A6373-A6380.	2.9	58
3	Effect of the electrode/electrolyte interface structure on the potassium-ion diffusional and charge transfer rates: towards a high voltage potassium-ion battery. Electrochimica Acta, 2017, 258, 814-824.	5.2	58
4	Ferrocene/Ferrocenium Redox Couple at Au(111)/Ionic Liquid and Au(111)/Acetonitrile Interfaces: A Molecular-Level View at the Elementary Act. Journal of Physical Chemistry C, 2014, 118, 6151-6164.	3.1	49
5	Quinones Electrochemistry in Room-Temperature Ionic Liquids. Journal of Physical Chemistry B, 2011, 115, 668-677.	2.6	48
6	Kinetic analysis of lithium intercalating systems: cyclic voltammetry. Electrochimica Acta, 2016, 190, 1087-1099.	5.2	42
7	Solvent effect on the kinetics of lithium ion intercalation into LiCoO2. Electrochimica Acta, 2017, 228, 114-124.	5.2	35
8	Development of vanadium-based polyanion positive electrode active materials for high-voltage sodium-based batteries. Nature Communications, 2022, 13, .	12.8	35
9	Reversible facile Rb ⁺ and K ⁺ ions de/insertion in a KTiOPO ₄ -type RbVPO ₄ F cathode material. Journal of Materials Chemistry A, 2018, 6, 14420-14430.	10.3	34
10	Influence of Carbon Coating on Intercalation Kinetics and Transport Properties of LiFePO ₄ . ChemElectroChem, 2019, 6, 5090-5100.	3.4	33
11	Diagnostics of lithium-ion intercalation rate-determining step: Distinguishing between slow desolvation and slow charge transfer. Electrochimica Acta, 2019, 302, 316-326.	5.2	32
12	Lithium Ion Coupled Electron-Transfer Rates in Superconcentrated Electrolytes: Exploring the Bottlenecks for Fast Charge-Transfer Rates with LiMn ₂ O ₄ Cathode Materials. Langmuir, 2017, 33, 9378-9389.	3.5	29
13	Phase boundary propagation kinetics predominately limit the rate capability of NASICON-type Na3+xMnxV2-x(PO4)3 (0a‰¤a‰⊉) materials. Electrochimica Acta, 2020, 354, 136761.	5.2	26
14	The physical origin of the activation barrier in Li-ion intercalation processes: the overestimated role of desolvation. Electrochimica Acta, 2021, 372, 137843.	5.2	24
15	Mixed-Cation Perovskite La _{0.6} Ca _{0.4} Fe _{0.7} Ni _{0.3} O _{2.9} as a Stable and Efficient Catalyst for the Oxygen Evolution Reaction. ACS Catalysis, 2021, 11, 8338-8348.	11.2	24
16	The Misconception of Mg ²⁺ Insertion into Prussian Blue Analogue Structures from Aqueous Solution. ChemSusChem, 2021, 14, 1574-1585.	6.8	22
17	Cycling-Driven Electrochemical Activation of Li-Rich NMC Positive Electrodes for Li-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 7758-7769.	5.1	21
18	Properties of Sodium Tetrafluoroborate Solutions in 1-Butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid. Journal of Chemical & Engineering Data, 2012, 57, 3019-3025.	1.9	20

VICTORIA A NIKITINA

#	Article	IF	CITATIONS
19	α-VPO ₄ : A Novel Many Monovalent Ion Intercalation Anode Material for Metal-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 12431-12440.	8.0	20
20	Charge transfer processes in the course of metal-ion electrochemical intercalation. Current Opinion in Electrochemistry, 2020, 19, 71-77.	4.8	19
21	High-voltage structural evolution and its kinetic consequences for the Na4MnV(PO4)3 sodium-ion battery cathode material. Journal of Power Sources, 2022, 518, 230769.	7.8	19
22	Long Distance Electron Transfer at the Metal/Alkanethiol/Ionic Liquid Interface. Journal of Physical Chemistry C, 2014, 118, 15970-15977.	3.1	18
23	ORR on Simple Manganese Oxides: Molecular-Level Factors Determining Reaction Mechanisms and Electrocatalytic Activity. Journal of the Electrochemical Society, 2018, 165, J3199-J3208.	2.9	18
24	Electrochemical Patterns of Phase Transforming Intercalation Materials: Diagnostic Criteria for the Case of Slow Nucleation Rate Control. Journal of the Electrochemical Society, 2019, 166, A829-A837.	2.9	17
25	Do H-bonds explain strong ion aggregation in ethylammonium nitrate + acetonitrile mixtures?. Physical Chemistry Chemical Physics, 2013, 15, 18445.	2.8	16
26	A molecular dynamics study of the ionic and molecular permeability of alkanethiol monolayers on the gold electrode surface. High Energy Chemistry, 2015, 49, 341-346.	0.9	15
27	Electrochemical Analysis of the Mechanism of Potassiumâ€ion Insertion into Kâ€rich Prussian Blue Materials. ChemElectroChem, 2020, 7, 761-769.	3.4	13
28	Phase boundary propagation mode in nano-sized electrode materials evidenced by potentiostatic current transients analysis: Li-rich LiFePO4 case study. Electrochimica Acta, 2021, 368, 137627.	5.2	13
29	When do defectless alkanethiol SAMs in ionic liquids become penetrable? A molecular dynamics study. Physical Chemistry Chemical Physics, 2015, 17, 31947-31955.	2.8	12
30	Understanding the Nature of Heterogeneous Electron Transfer in Molecular and Ionic Solvents: Experiment, Theory, and Computations. Journal of Physical Chemistry C, 2019, 123, 14370-14381.	3.1	12
31	Exploring the Role of Crystal Water in Potassium Manganese Hexacyanoferrate as a Cathode Material for Potassium-Ion Batteries. Crystals, 2021, 11, 895.	2.2	12
32	Subsequent redox transitions as a tool to understand solvation in ionic liquids. Electrochimica Acta, 2013, 103, 243-251.	5.2	9
33	Exploring the Kinetic Limitations Causing Unusual Low-Voltage Li Reinsertion in Either Layered or Tridimensional Li2IrO3 Cathode Materials. Chemistry of Materials, 2020, 32, 2133-2147.	6.7	8
34	Monoclinic α-Na ₂ FePO ₄ F with Strong Antisite Disorder and Enhanced Na ⁺ Diffusion. Inorganic Chemistry, 2020, 59, 16225-16237.	4.0	7
35	Solvent effect on electron transfer through alkanethiols. Journal of Electroanalytical Chemistry, 2018, 819, 58-64.	3.8	5
36	Advanced electrochemical analysis of metal-ion battery materials for rationalizing and improving battery performance. Current Opinion in Electrochemistry, 2021, 29, 100768.	4.8	5

VICTORIA A NIKITINA

#	Article	IF	CITATIONS
37	α-TiPO ₄ as a Negative Electrode Material for Lithium-Ion Batteries. Inorganic Chemistry, 2021, 60, 12237-12246.	4.0	4
38	Resolving the Seeming Contradiction between the Superior Rate Capability of Prussian Blue Analogues and the Extremely Slow Ionic Diffusion. Journal of Physical Chemistry Letters, 2022, , 3165-3172.	4.6	4
39	Translational diffusion coefficient of a nitroxide radical in an ionic liquid, as determined via EPR spectroscopy, cyclic voltammetry, and chronoammetry. Russian Journal of Physical Chemistry A, 2013, 87, 149-152.	0.6	3
40	Electrochemical instability of bis(trifluoromethylsulfonyl)imide based ionic liquids as solvents in high voltage electrolytes for potassium ion batteries. Mendeleev Communications, 2020, 30, 679-682.	1.6	3
41	Charge transfer through interfaces in metal-ion intercalation systems. , 2023, , 128-171.		2
42	Distinguishing Slow Charge Transfer from Slow Desolvation Rate-Determining Step in Ion Intercalation Processes. ECS Meeting Abstracts, 2019, , .	0.0	0
43	Quantifying Nucleation Rates in Phase-Transforming Metal-Ion Intercalation Materials Based on Cyclic Voltammetry and Chronoamperometry Data. ECS Meeting Abstracts, 2020, MA2020-01, 1171-1171.	0.0	0
44	Enhancement of Catalytic Activity and Stability of La0.6Ca0.4Fe0.7Ni0.3O2.9 Perovskite with ppm Concentration of Fe in the Electrolyte for the Oxygen Evolution Reaction. Materials, 2021, 14, 6403.	2.9	0