Stefan Heller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2629249/publications.pdf

Version: 2024-02-01

101 papers	8,742 citations	46918 47 h-index	91 g-index
107	107	107	6817 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Vanilloid Receptor–Related Osmotically Activated Channel (VR-OAC), a Candidate Vertebrate Osmoreceptor. Cell, 2000, 103, 525-535.	13.5	1,237
2	A Unified Nomenclature for the Superfamily of TRP Cation Channels. Molecular Cell, 2002, 9, 229-231.	4.5	620
3	Pluripotent stem cells from the adult mouse inner ear. Nature Medicine, 2003, 9, 1293-1299.	15.2	447
4	Mutations in a novel cochlear gene cause DFNA9, a human nonsyndromic deafness with vestibular dysfunction. Nature Genetics, 1998, 20, 299-303.	9.4	317
5	Mechanosensitive Hair Cell-like Cells from Embryonic and Induced Pluripotent Stem Cells. Cell, 2010, 141, 704-716.	13.5	304
6	Differential Distribution of Stem Cells in the Auditory and Vestibular Organs of the Inner Ear. JARO - Journal of the Association for Research in Otolaryngology, 2007, 8, 18-31.	0.9	299
7	The mechanosensitive nature of TRPV channels. Pflugers Archiv European Journal of Physiology, 2005, 451, 193-203.	1.3	273
8	Generation of hair cells by stepwise differentiation of embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13495-13500.	3.3	264
9	Hair-bearing human skin generated entirely from pluripotent stem cells. Nature, 2020, 582, 399-404.	13.7	236
10	Distribution of Ca2+-Activated K+ Channel Isoforms along the Tonotopic Gradient of the Chicken's Cochlea. Neuron, 1997, 19, 1061-1075.	3.8	202
11	Engraftment and differentiation of embryonic stem cell–derived neural progenitor cells in the cochlear nerve trunk: Growth of processes into the organ of corti. Journal of Neurobiology, 2006, 66, 1489-1500.	3.7	180
12	PACSINs Bind to the TRPV4 Cation Channel. Journal of Biological Chemistry, 2006, 281, 18753-18762.	1.6	166
13	Quo vadis, hair cell regeneration?. Nature Neuroscience, 2009, 12, 679-685.	7.1	154
14	A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19583-19588.	3.3	150
15	Reconstruction of the Mouse Otocyst and Early Neuroblast Lineage at Single-Cell Resolution. Cell, 2014, 157, 964-978.	13.5	140
16	Hair Follicle Development in Mouse Pluripotent Stem Cell-Derived Skin Organoids. Cell Reports, 2018, 22, 242-254.	2.9	125
17	The DEP Domain Determines Subcellular Targeting of the GTPase Activating Protein RGS9 <i>In Vivo</i> . Journal of Neuroscience, 2003, 23, 10175-10181.	1.7	113
18	Changes in the regulation of the Notch signaling pathway are temporally correlated with regenerative failure in the mouse cochlea. Frontiers in Cellular Neuroscience, 2015, 9, 110.	1.8	111

#	Article	IF	CITATIONS
19	Stimulus-specific Modulation of the Cation Channel TRPV4 by PACSIN 3. Journal of Biological Chemistry, 2008, 283, 6272-6280.	1.6	110
20	Inner Ear Hair Cell-Like Cells from Human Embryonic Stem Cells. Stem Cells and Development, 2014, 23, 1275-1284.	1.1	107
21	Small Molecule Activators of TRPML3. Chemistry and Biology, 2010, 17, 135-148.	6.2	105
22	Bone marrow mesenchymal stem cells are progenitors in vitro for inner ear hair cells. Molecular and Cellular Neurosciences, 2007, 34, 59-68.	1.0	104
23	Intrinsic regenerative potential of murine cochlear supporting cells. Scientific Reports, 2011, 1, 26.	1.6	104
24	Transient receptor potential vanilloid 4 deficiency suppresses unloadingâ€induced bone loss. Journal of Cellular Physiology, 2008, 216, 47-53.	2.0	103
25	Vertebrate and invertebrate TRPV-like mechanoreceptors. Cell Calcium, 2003, 33, 471-478.	1.1	93
26	Absence of the RGS9·Gβ5 GTPase-activating Complex in Photoreceptors of the R9AP Knockout Mouse. Journal of Biological Chemistry, 2004, 279, 1581-1584.	1.6	90
27	Parvalbumin 3 is an Abundant Ca2+ Buffer in Hair Cells. JARO - Journal of the Association for Research in Otolaryngology, 2002, 3, 488-498.	0.9	88
28	Tympanic border cells are Wnt-responsive and can act as progenitors for postnatal mouse cochlear cells. Development (Cambridge), 2013, 140, 1196-1206.	1.2	87
29	Twinfilin 2 Regulates Actin Filament Lengths in Cochlear Stereocilia. Journal of Neuroscience, 2009, 29, 15083-15088.	1.7	82
30	Stem cells as therapy for hearing loss. Trends in Molecular Medicine, 2004, 10, 309-315.	3.5	80
31	Single-cell proteomics reveals changes in expression during hair-cell development. ELife, 2019, 8, .	2.8	80
32	Quantitative High-Resolution Cellular Map of the Organ of Corti. Cell Reports, 2015, 11, 1385-1399.	2.9	79
33	α-Tubulin K40 acetylation is required for contact inhibition of proliferation and cell–substrate adhesion. Molecular Biology of the Cell, 2014, 25, 1854-1866.	0.9	71
34	Molecular characterization and prospective isolation of human fetal cochlear hair cell progenitors. Nature Communications, 2018, 9, 4027.	5.8	70
35	BMP4 signaling is involved in the generation of inner ear sensory epithelia. BMC Developmental Biology, 2005, 5, 16.	2.1	69
36	The tissue-specific expression of TRPML2 (MCOLN-2) gene is influenced by the presence of TRPML1. Pflugers Archiv European Journal of Physiology, 2009, 459, 79-91.	1.3	69

#	Article	IF	Citations
37	Isolation of Sphere-Forming Stem Cells from the Mouse Inner Ear. Methods in Molecular Biology, 2009, 493, 141-162.	0.4	68
38	Reinnervation of hair cells by auditory neurons after selective removal of spiral ganglion neurons. Journal of Neurobiology, 2006, 66, 319-331.	3.7	66
39	Stem/Progenitor Cells Derived from the Cochlear Sensory Epithelium Give Rise to Spheres with Distinct Morphologies and Features. JARO - Journal of the Association for Research in Otolaryngology, 2009, 10, 173-190.	0.9	65
40	TRP channels as candidates for hearing and balance abnormalities in vertebrates. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 1022-1027.	1.8	62
41	Modulation of Wnt Signaling Enhances Inner Ear Organoid Development in 3D Culture. PLoS ONE, 2016, 11, e0162508.	1.1	61
42	Single-cell analysis delineates a trajectory toward the human early otic lineage. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8508-8513.	3.3	60
43	Islet-1 expression in the developing chicken inner ear. Journal of Comparative Neurology, 2004, 477, 1-10.	0.9	58
44	LIF promotes neurogenesis and maintains neural precursors in cell populations derived from spiral ganglion stem cells. BMC Developmental Biology, 2007, 7, 112.	2.1	53
45	Robust Postmortem Survival of Murine Vestibular and Cochlear Stem Cells. JARO - Journal of the Association for Research in Otolaryngology, 2007, 8, 194-204.	0.9	51
46	MAGI-1, A Candidate Stereociliary Scaffolding Protein, Associates with the Tip-Link Component Cadherin 23. Journal of Neuroscience, 2008, 28, 11269-11276.	1.7	48
47	Novel insights into inner ear development and regeneration for targeted hearing loss therapies. Hearing Research, 2020, 397, 107859.	0.9	48
48	Greater epithelial ridge cells are the principal organoid-forming progenitors of the mouse cochlea. Cell Reports, 2021, 34, 108646.	2.9	48
49	The potential role of endogenous stem cells in regeneration of the inner ear. Hearing Research, 2007, 227, 48-52.	0.9	47
50	Correlation of Pax-2 expression with cell proliferation in the developing chicken inner ear. Journal of Neurobiology, 2004, 60, 61-70.	3.7	46
51	Correlation of expression of the actin filament-bundling protein espin with stereociliary bundle formation in the developing inner ear. Journal of Comparative Neurology, 2004, 468, 125-134.	0.9	45
52	A Novel Conserved Cochlear Gene, OTOR: Identification, Expression Analysis, and Chromosomal Mapping. Genomics, 2000, 66, 242-248.	1.3	42
53	Identification and characterization of mouse otic sensory lineage genes. Frontiers in Cellular Neuroscience, 2015, 9, 79.	1.8	41
54	Transcriptional Dynamics of Hair-Bundle Morphogenesis Revealed with CellTrails. Cell Reports, 2018, 23, 2901-2914.e13.	2.9	40

#	Article	IF	Citations
55	Progenitor Cells from the Adult Human Inner Ear. Anatomical Record, 2020, 303, 461-470.	0.8	40
56	Small Molecules for Early Endosome-Specific Patch Clamping. Cell Chemical Biology, 2017, 24, 907-916.e4.	2.5	34
57	FCHSD1 and FCHSD2 Are Expressed in Hair Cell Stereocilia and Cuticular Plate and Regulate Actin Polymerization In Vitro. PLoS ONE, 2013, 8, e56516.	1.1	34
58	Diverse expression patterns of LIMâ€homeodomain transcription factors (LIMâ€HDs) in mammalian inner ear development. Developmental Dynamics, 2008, 237, 3305-3312.	0.8	33
59	Aminoglycoside Damage and Hair Cell Regeneration in the Chicken Utricle. JARO - Journal of the Association for Research in Otolaryngology, 2018, 19, 17-29.	0.9	31
60	Cell-type identity of the avian cochlea. Cell Reports, 2021, 34, 108900.	2.9	31
61	Spatiotemporal dynamics of inner ear sensory and non-sensory cells revealed by single-cell transcriptomics. Cell Reports, 2021, 36, 109358.	2.9	31
62	Curing hearing loss: Patient expectations, health care practitioners, and basic science. Journal of Communication Disorders, 2010, 43, 311-318.	0.8	30
63	Constitutive Activity of TRPML2 and TRPML3 Channels versus Activation by Low Extracellular Sodium and Small Molecules. Journal of Biological Chemistry, 2012, 287, 22701-22708.	1.6	29
64	Expression patterns of the RGS9-1 anchoring protein R9AP in the chicken and mouse suggest multiple roles in the nervous system. Molecular and Cellular Neurosciences, 2003, 24, 687-695.	1.0	28
65	A transient role for ciliary neurotrophic factor in chick photoreceptor development., 1998, 37, 672-683.		27
66	PIST regulates the intracellular trafficking and plasma membrane expression of Cadherin 23. BMC Cell Biology, 2010, 11, 80.	3.0	27
67	Constitutive Activity of TRPML2 and TRPML3 Channels versus Activation by Low Extracellular Sodium and Small Molecules. Journal of Biological Chemistry, 2012, 287, 22701-22708.	1.6	26
68	Applications for single cell trajectory analysis in inner ear development and regeneration. Cell and Tissue Research, 2015, 361, 49-57.	1.5	26
69	Stem Cells and the Bird Cochlea—Where Is Everybody?. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a033183.	2.9	26
70	Concise Review: Inner Ear Stem Cells—An Oxymoron, but Why?. Stem Cells, 2012, 30, 69-74.	1.4	25
71	Cisplatin exposure damages resident stem cells of the mammalian inner Ear. Developmental Dynamics, 2014, 243, 1328-1337.	0.8	24
72	A Simple Method for Purification of Vestibular Hair Cells and Non-Sensory Cells, and Application for Proteomic Analysis. PLoS ONE, 2013, 8, e66026.	1.1	24

#	Article	IF	CITATIONS
73	Expression of Frizzled genes in the developing chick eye. Gene Expression Patterns, 2003, 3, 659-662.	0.3	23
74	Life and Death of Sensory Hair Cells Expressing Constitutively Active TRPML3. Journal of Biological Chemistry, 2009, 284, 13823-13831.	1.6	23
75	Genetic Inactivation of Trpml3 Does Not Lead to Hearing and Vestibular Impairment in Mice. PLoS ONE, 2010, 5, e14317.	1.1	22
76	Transcriptomic characterization of dying hair cells in the avian cochlea. Cell Reports, 2021, 34, 108902.	2.9	21
77	3D computational reconstruction of tissues with hollow spherical morphologies using single-cell gene expression data. Nature Protocols, 2015, 10, 459-474.	5.5	20
78	Sonic hedgehog promotes mouse inner ear progenitor cell proliferation and hair cell generation in vitro. NeuroReport, 2006, 17, 121-124.	0.6	18
79	A Novel Ion Channel Formed by Interaction of TRPML3 with TRPV5. PLoS ONE, 2013, 8, e58174.	1.1	18
80	Transient, afferent input-dependent, postnatal niche for neural progenitor cells in the cochlear nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14456-14461.	3.3	17
81	Molecular screens for inner ear genes. Journal of Neurobiology, 2002, 53, 265-275.	3.7	16
82	Single Cell Transcriptomics Reveal Abnormalities in Neurosensory Patterning of the Chd7 Mutant Mouse Ear. Frontiers in Genetics, 2018, 9, 473.	1.1	16
83	Activity-Dependent Phosphorylation by CaMKIIÎ Alters the Ca2+ Affinity of the Multi-C2-Domain Protein Otoferlin. Frontiers in Synaptic Neuroscience, 2017, 9, 13.	1.3	14
84	A helix-breaking mutation in the epithelial Ca2+ channel TRPV5 leads to reduced Ca2+-dependent inactivation. Cell Calcium, 2010, 48, 275-287.	1.1	13
85	Fbxo2 mouse and embryonic stem cell reporter lines delineate in vitro-generated inner ear sensory epithelia cells and enable otic lineage selection and Cre-recombination. Developmental Biology, 2018, 443, 64-77.	0.9	13
86	Avian auditory hair cell regeneration is accompanied by JAK/STAT-dependent expression of immune-related genes in supporting cells. Development (Cambridge), 2022, 149, .	1.2	13
87	Oriented collagen as a potential cochlear implant electrode surface coating to achieve directed neurite outgrowth. European Archives of Oto-Rhino-Laryngology, 2012, 269, 1111-1116.	0.8	12
88	Sound from silence. Nature Medicine, 2005, 11, 249-250.	15.2	10
89	Regenerative Medicine for the Special Senses: Restoring the Inputs. Journal of Neuroscience, 2012, 32, 14053-14057.	1.7	10
90	Identification of novel MYO18A interaction partners required for myoblast adhesion and muscle integrity. Scientific Reports, 2016, 6, 36768.	1.6	10

#	Article	IF	CITATIONS
91	Application of physiological genomics to the study of hearing disorders. Journal of Physiology, 2002, 543, 3-12.	1.3	9
92	Serial Analysis of Gene Expression in the Chicken Otocyst. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 697-710.	0.9	9
93	Two deaf mice, two deaf mice…. Nature Medicine, 1998, 4, 560-561.	15.2	8
94	Immunohistochemistry and In Situ mRNA Detection Using Inner Ear Vibratome Sections. Neuromethods, 2022, , 41-58.	0.2	5
95	Molecular Tools to Study Regeneration of the Avian Cochlea and Utricle. Neuromethods, 2022, , 77-97.	0.2	4
96	Rethinking How Hearing Happens. Neuron, 2009, 62, 305-307.	3.8	3
97	Special issue on inner ear development and regeneration. Hearing Research, 2013, 297, 1-2.	0.9	3
98	Murine cochlear cell sorting and cell-type-specific organoid culture. STAR Protocols, 2021, 2, 100645.	0.5	1
99	Fluorescent in situ mRNA detection in the adult mouse cochlea. STAR Protocols, 2021, 2, 100711.	0.5	0
100	Stem Cell Approaches and Small Molecules. , 2020, , 945-961.		0
101	Emerging Strategies for Restoring the Cochlea. , 2008, , 321-338.		O