
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2629037/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Timeâ€Resolved Paleomagnetic Record of Main Group Pallasites: Evidence for a Large ored, Thinâ€Mantled Parent Body. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006900.	3.6	10
2	Absence of a long-lived lunar paleomagnetosphere. Science Advances, 2021, 7, .	10.3	18
3	Asteroid magnetization from the early solar wind. Monthly Notices of the Royal Astronomical Society, 2021, 509, 2957-2968.	4.4	4
4	The Rhino Early Iron Age site, Thabazimbi, South Africa. Azania, 2020, 55, 360-388.	0.9	1
5	Arrival and magnetization of carbonaceous chondrites in the asteroid belt before 4562 million years ago. Communications Earth & Environment, 2020, 1, 54.	6.8	14
6	Paleomagnetism indicates that primary magnetite in zircon records a strong Hadean geodynamo. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2309-2318.	7.1	46
7	Hotspot motion caused the Hawaiian-Emperor Bend and LLSVPs are not fixed. Nature Communications, 2019, 10, 3370.	12.8	35
8	Special issue "Recent advances in geo-, paleo- and rock-magnetism― Earth, Planets and Space, 2019, 71, .	2.5	0
9	Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity. Nature Geoscience, 2019, 12, 143-147.	12.9	121
10	When Hotspots Move: The New View of Mantle Dynamics Made Possible by Scientific Ocean Drilling. Oceanography, 2019, 32, 150-152.	1.0	12
11	Palaeointensity of the 1.3 billion-yr-old Gardar basalts, southern Greenland revisited: no evidence for onset of inner core growth. Geophysical Journal International, 2019, 217, 1974-1987.	2.4	13
12	Primary pseudo-single and single-domain magnetite inclusions in quartzite cobbles of the Jack Hills (Western Australia): implications for the Hadean geodynamo. Geophysical Journal International, 2019, 216, 598-608.	2.4	5
13	New Archeomagnetic Directional Records From Iron Age Southern Africa (ca. 425–1550 CE) and Implications for the South Atlantic Anomaly. Geophysical Research Letters, 2018, 45, 1361-1369.	4.0	18
14	Cluster analysis on a sphere: Application to magnetizations from metasediments of the Jack Hills, Western Australia. Earth and Planetary Science Letters, 2018, 484, 67-80.	4.4	10
15	Subterranean clues to the future of our planetary magnetic shield. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13154-13156.	7.1	6
16	Mass, energy, and momentum capture from stellar winds by magnetized and unmagnetized planets: implications for atmospheric erosion and habitability. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5146-5155.	4.4	27
17	A Large Ornithurine Bird (Tingmiatornis arctica) from the Turonian High Arctic: Climatic and Evolutionary Implications. Scientific Reports, 2016, 6, 38876.	3.3	16
18	Detrital magnetite and chromite in Jack Hills quartzite cobbles: Further evidence for the preservation of primary magnetizations and new insights into sediment provenance. Earth and Planetary Science Letters, 2016, 451, 298-314.	4.4	15

#	Article	IF	CITATIONS
19	Comment on: Pervasive remagnetization of detrital zircon host rocks in the Jack Hills, Western Australia and implications for records of the early dynamo, by Weiss et al. (2015). Earth and Planetary Science Letters, 2016, 450, 406-408.	4.4	8
20	The inverse microconglomerate test: Further evidence for the preservation of Hadean magnetizations in metasediments of the Jack Hills, Western Australia. Geophysical Research Letters, 2016, 43, 4215-4220.	4.0	14
21	Palaeointensity, core thermal conductivity and the unknown age of the inner core. Geophysical Journal International, 2016, 205, 1190-1195.	2.4	58
22	A stable Ediacaran Earth recorded by single silicate crystals of the ca. 565 Ma Sept-ÃŽles intrusion. Geology, 2015, 43, 131-134.	4.4	36
23	Antiquity of the South Atlantic Anomaly and evidence for top-down control on the geodynamo. Nature Communications, 2015, 6, 7865.	12.8	81
24	A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science, 2015, 349, 521-524.	12.6	207
25	Computer vision enhances mobile eye-tracking to expose expert cognition in natural-scene visual-search tasks. , 2014, , .		1
26	Detecting the oldest geodynamo and attendant shielding from the solar wind: Implications for habitability. Physics of the Earth and Planetary Interiors, 2014, 233, 68-87.	1.9	77
27	Signals from the ancient geodynamo: A paleomagnetic field test on the Jack Hills metaconglomerate. Earth and Planetary Science Letters, 2013, 367, 123-132.	4.4	14
28	Evidence for a Dynamo in the Main Group Pallasite Parent Body. Science, 2012, 338, 939-942.	12.6	108
29	Sphere ² : Jerry's rig, an OpenGL application for non-linear panorama viewing and interaction. , 2012, , .		3
30	An archeomagnetic analysis of burnt grain bin floors from ca. 1200 to 1250 AD Iron-Age South Africa. Physics of the Earth and Planetary Interiors, 2012, 190-191, 71-79.	1.9	18
31	Hum from the quiet zone. Nature Geoscience, 2012, 5, 161-162.	12.9	1
32	Development of a lowâ€ŧemperature insert for the measurement of remanent magnetization direction using superconducting quantum interference device rock magnetometers. Geochemistry, Geophysics, Geosystems, 2011, 12, .	2.5	5
33	Evolving core conditions ca. 2 billion years ago detected by paleosecular variation. Physics of the Earth and Planetary Interiors, 2011, 187, 225-231.	1.9	66
34	Observations and Models of the Long-Term Evolution ofÂEarth's Magnetic Field. Space Science Reviews, 2010, 155, 337-370.	8.1	71
35	Geodynamo, Solar Wind, and Magnetopause 3.4 to 3.45 Billion Years Ago. Science, 2010, 327, 1238-1240.	12.6	256
36	Co-location of eruption sites of the Siberian Traps and North Atlantic Igneous Province: Implications for the nature of hotspots and mantle plumes. Earth and Planetary Science Letters, 2010, 297, 687-690.	4.4	21

#	Article	IF	CITATIONS
37	Observations and Models of the Long-Term Evolution ofÂEarth's Magnetic Field. Space Sciences Series of ISSI, 2010, , 337-370.	0.0	0
38	The Bent Hawaiian-Emperor Hotspot Track: Inheriting the Mantle Wind. Science, 2009, 324, 50-53.	12.6	151
39	On the magnetostratigraphic age of Nauru Basin basalts of the western Pacific Ocean and timing of Ontong Java volcanism. Earth and Planetary Science Letters, 2009, 287, 175-184.	4.4	2
40	Evidence for a 3.45â€billionâ€yearâ€old magnetic remanence: Hints of an ancient geodynamo from conglomerates of South Africa. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	40
41	New Late Cretaceous macrobaenid turtle with Asian affinities from the High Canadian Arctic: Dispersal via ice-free polar routes. Geology, 2009, 37, 183-186.	4.4	28
42	The Kiaman Reversed Polarity Superchron at Kiama: Toward a field strength estimate based on single silicate crystals. Physics of the Earth and Planetary Interiors, 2008, 169, 49-58.	1.9	31
43	Linking the Late Cretaceous to Paleogene Pacific plate and the Atlantic bordering continents using plate circuits and paleomagnetic data. Journal of Geophysical Research, 2008, 113, .	3.3	28
44	A revised kinematic model for the relative motion between Pacific oceanic plates and North America since the Late Cretaceous. Journal of Geophysical Research, 2008, 113, .	3.3	100
45	A fossil champsosaur population from the high Arctic: Implications for Late Cretaceous paleotemperatures. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 248, 49-59.	2.3	28
46	On the motion of Hawaii and other mantle plumes. Chemical Geology, 2007, 241, 234-247.	3.3	85
47	Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals. Nature, 2007, 446, 657-660.	27.8	114
48	G-Cubed: A snapshot today and a look to the future. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	0
49	Alteration and self-reversal in oceanic basalts. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	24
50	N-type magnetism at cryogenic temperatures in oceanic basalt. Physics of the Earth and Planetary Interiors, 2006, 157, 46-54.	1.9	13
51	A Late Cretaceous (Turonian–Coniacian) high-latitude turtle assemblage from the Canadian Arctic. Canadian Journal of Earth Sciences, 2005, 42, 2073-2080.	1.3	20
52	On the compositional field of self-reversing titanomaghemite: Constraints from Deep Sea Drilling Project Site 307. Journal of Geophysical Research, 2005, 110, .	3.3	20
53	Self-reversed magnetization carried by titanomaghemite in oceanic basalts. Earth and Planetary Science Letters, 2004, 222, 959-959.	4.4	0
54	Self-reversed magnetization carried by titanomaghemite in oceanic basalts. Earth and Planetary Science Letters, 2004, 222, 959-969.	4.4	66

#	Article	IF	CITATIONS
55	The Emperor Seamounts: Southward Motion of the Hawaiian Hotspot Plume in Earth's Mantle. Science, 2003, 301, 1064-1069.	12.6	375
56	Fossil fishes from the high Canadian Arctic: further palaeobiological evidence for extreme climatic warmth during the Late Cretaceous (Turonian–Coniacian). Cretaceous Research, 2003, 24, 615-632.	1.4	22
57	Magnetic hysteresis monitoring of Cretaceous submarine basaltic glass during Thellier paleointensity experiments: evidence for alteration and attendant low field bias. Earth and Planetary Science Letters, 2003, 206, 571-585.	4.4	46
58	A Late Cretaceous pole for the Pacific plate: implications for apparent and true polar wander and the drift of hotspots. Tectonophysics, 2003, 362, 321-333.	2.2	45
59	The Cretaceous superchron geodynamo: Observations near the tangent cylinder. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14020-14025.	7.1	117
60	Magnetite reveals ambient field strength at low temperatures. Eos, 2002, 83, 309.	0.1	5
61	Magnetic field control of the low-temperature magnetic properties of stoichiometric and cation-deficient magnetite. Earth and Planetary Science Letters, 2002, 194, 359-368.	4.4	51
62	Response to comment on "Stability of the Earth with respect to the spin axis for the last 130 Million Years―by P. Camps, M. Prévot, M. Daignières and P. Machetel. Earth and Planetary Science Letters, 2002, 198, 533-539.	4.4	13
63	Estimating superparamagnetism in marine sediments with the time dependency of coercivity of remanence. Journal of Geophysical Research, 2001, 106, 16135-16143.	3.3	18
64	Stability of the Earth with respect to the spin axis for the last 130 million years. Earth and Planetary Science Letters, 2001, 184, 549-553.	4.4	52
65	Low-temperature magnetic properties of pelagic sediments (Ocean Drilling Program Site 805C): Tracers of maghemitization and magnetic mineral reduction. Journal of Geophysical Research, 2000, 105, 16457-16471.	3.3	92
66	In search of high-fidelity geomagnetic paleointensities: A comparison of single plagioclase crystal and whole rock Thellier-Thellier analyses. Journal of Geophysical Research, 2000, 105, 23579-23594.	3.3	55
67	Geomagnetic paleointensity derived from single plagioclase crystals. Earth and Planetary Science Letters, 1999, 169, 1-5.	4.4	81
68	Biogeochemical remanent magnetization in pelagic sediments of the western equatorial Pacific Ocean. Geophysical Research Letters, 1998, 25, 3987-3990.	4.0	51
69	Paleomagnetic evidence for motion of the Hawaiian hotspot during formation of the Emperor seamounts. Earth and Planetary Science Letters, 1997, 153, 171-180.	4.4	156
70	Magnetostratigraphy of the Late Cretaceous to Eocene Sverdrup Basin: Implications for heterochroneity, deformation, and rotations in the Canadian Arctic archipelago. Journal of Geophysical Research, 1997, 102, 723-746.	3.3	17
71	Non-steady state magnetic mineral reduction, chemical lock-in, and delayed remanence acquisition in pelagic sediments. Earth and Planetary Science Letters, 1996, 144, 315-326.	4.4	84
72	Large-scale motion between Pacific and Atlantic hotspots. Nature, 1995, 378, 477-480.	27.8	115

#	Article	IF	CITATIONS
73	Superparamagnetism and reduction diagenesis in pelagic sediments: Enhancement or depletion?. Geophysical Research Letters, 1995, 22, 1337-1340.	4.0	75
74	A primary magnetization fingerprint from the Cretaceous Laytonville Limestone: Further evidence for rapid oceanic plate velocities. Journal of Geophysical Research, 1994, 99, 21691-21703.	3.3	19
75	Temporal trends of magnetic dissolution in the pelagic realm: Gauging paleoproductivity?. Earth and Planetary Science Letters, 1994, 123, 39-48.	4.4	90
76	Reversed polarity characteristic magnetizations in the Albian Contessa Section, Umbrian Apennines, Italy: Implications for the existence of a Midâ€Cretaceous mixed polarity interval. Journal of Geophysical Research, 1992, 97, 241-271.	3.3	51
77	Magnetic susceptibility cyclicity and magnetic dissolution in Cretaceous limestones of the southern Alps (Italy). Geophysical Research Letters, 1992, 19, 1515-1518.	4.0	13
78	Remagnetization and northward translation of Mesozoic red chert from Cedros Island and the San Benito Islands, Baja California, Mexico: Discussion and reply. Bulletin of the Geological Society of America, 1991, 103, 966-969.	3.3	1
79	Brief reversed polarity interval during the Cretaceous Normal Polarity Superchron. Geology, 1990, 18, 683.	4.4	51
80	Absolute inclination values from deep sea sediments: A reexamination of the Cretaceous Pacific record. Geophysical Research Letters, 1990, 17, 101-104.	4.0	47
81	Fast instantaneous oceanic plate velocities recorded by the Cretaceous Laytonville limestone: Paleomagnetic analysis and kinematic implications. Journal of Geophysical Research, 1990, 95, 15503-15527.	3.3	29
82	M-sequence reversals recorded in DSDP sediment cores from the western Mid-Pacific Mountains and Magellan Rise. Bulletin of the Geological Society of America, 1989, 101, 1306-1316.	3.3	43
83	Franciscan Complex Calera limestones: accreted remnants of Farallon Plate oceanic plateaus. Nature, 1985, 317, 345-347.	27.8	65
84	Paleolatitudes of Franciscan limestones. Geology, 1985, 13, 741.	4.4	10
85	The Paradox of Low Field Values and the Long-Term History of the Geodynamo. Geophysical Monograph Series, 0, , 75-84.	0.1	9