Bruce Nelson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2628376/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 2005, 145, 87-99.	0.9	2,346
2	Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 2014, 20, 3177-3190.	4.2	1,712
3	Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science, 2021, 372, 815-821.	6.0	1,125
4	Height-diameter allometry of tropical forest trees. Biogeosciences, 2011, 8, 1081-1106.	1.3	396
5	Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 2012, 9, 3381-3403.	1.3	373
6	Endemism centres, refugia and botanical collection density in Brazilian Amazonia. Nature, 1990, 345, 714-716.	13.7	356
7	Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science, 2016, 351, 972-976.	6.0	336
8	Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecology and Management, 1999, 117, 149-167.	1.4	282
9	Forest Disturbance by Large Blowdowns in the Brazilian Amazon. Ecology, 1994, 75, 853-858.	1.5	218
10	The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmospheric Chemistry and Physics, 2015, 15, 10723-10776.	1.9	218
11	Estimates of forest biomass in the Brazilian Amazon: New allometric equations and adjustments to biomass from wood-volume inventories. Forest Ecology and Management, 2008, 256, 1853-1867.	1.4	211
12	Spatial patterns of hydrology, geomorphology, and vegetation on the floodplain of the Amazon river in Brazil from a remote sensing perspective. Geomorphology, 1995, 13, 215-232.	1.1	206
13	Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nature Communications, 2014, 5, 3434.	5.8	169
14	Natural forest disturbance and change in the Brazilian Amazon. International Journal of Remote Sensing, 1994, 10, 105-125.	1.1	141
15	Spectral changes with leaf aging in Amazon caatinga. Trees - Structure and Function, 1998, 12, 315.	0.9	134
16	Fire disturbance in Amazonian blackwater floodplain forests. Plant Ecology and Diversity, 2014, 7, 319-327.	1.0	122
17	Tree height in Brazil's â€~arc of deforestation': Shorter trees in south and southwest Amazonia imply lower biomass. Forest Ecology and Management, 2008, 255, 2963-2972.	1.4	118
18	Widespread Amazon forest tree mortality from a single crossâ€basin squall line event. Geophysical Research Letters, 2010, 37, .	1.5	116

BRUCE NELSON

#	Article	IF	CITATIONS
19	Wood density in dense forest in central Amazonia, Brazil. Forest Ecology and Management, 2005, 208, 261-286.	1.4	113
20	Wood density in forests of Brazil's â€~arc of deforestation': Implications for biomass and flux of carbon from land-use change in Amazonia. Forest Ecology and Management, 2007, 248, 119-135.	1.4	108
21	Leaf flush drives dry season green-up of the Central Amazon. Remote Sensing of Environment, 2016, 182, 90-98.	4.6	106
22	Bamboo-Dominated Forests of the Southwest Amazon: Detection, Spatial Extent, Life Cycle Length and Flowering Waves. PLoS ONE, 2013, 8, e54852.	1.1	99
23	Spatial and temporal dynamics of river channel migration and vegetation in central Amazonian white-water floodplains by remote-sensing techniques. Remote Sensing of Environment, 2009, 113, 2258-2266.	4.6	91
24	Mapping land cover types in the Amazon Basin using 1 km JERS-1 mosaic. International Journal of Remote Sensing, 2000, 21, 1201-1234.	1.3	72
25	The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration. Forest Ecology and Management, 2019, 438, 34-43.	1.4	70
26	Optimizing the Remote Detection of Tropical Rainforest Structure with Airborne Lidar: Leaf Area Profile Sensitivity to Pulse Density and Spatial Sampling. Remote Sensing, 2019, 11, 92.	1.8	69
27	Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest. New Phytologist, 2018, 217, 1507-1520.	3.5	66
28	Causes of reduced leafâ€ l evel photosynthesis during strong El Niño drought in a Central Amazon forest. Global Change Biology, 2018, 24, 4266-4279.	4.2	65
29	Monitoring restored tropical forest diversity and structure through UAV-borne hyperspectral and lidar fusion. Remote Sensing of Environment, 2021, 264, 112582.	4.6	61
30	Normalization of wood density in biomass estimates of Amazon forests. Forest Ecology and Management, 2008, 256, 990-996.	1.4	56
31	Multi-scale integration of satellite remote sensing improves characterization of dry-season green-up in an Amazon tropical evergreen forest. Remote Sensing of Environment, 2020, 246, 111865.	4.6	56
32	Storm intensity and oldâ€growth forest disturbances in the Amazon region. Geophysical Research Letters, 2010, 37, .	1.5	54
33	The influence of epiphylls on remote sensing of humid forests. Remote Sensing of Environment, 2009, 113, 1787-1798.	4.6	53
34	Seasonality of isoprenoid emissions from a primary rainforest inÂcentral Amazonia. Atmospheric Chemistry and Physics, 2016, 16, 3903-3925.	1.9	52
35	Fire favours expansion of bamboo-dominated forests in the south-west Amazon. Journal of Tropical Ecology, 2011, 27, 59-64.	0.5	49
36	Contrasting fire damage and fire susceptibility between seasonally flooded forest and upland forest in the Central Amazon using portable profiling LiDAR. Remote Sensing of Environment, 2016, 184, 153-160.	4.6	49

BRUCE NELSON

#	Article	IF	CITATIONS
37	Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 131, 52-64.	4.9	47
38	Repeated fires trap Amazonian blackwater floodplains in an open vegetation state. Journal of Applied Ecology, 2016, 53, 1597-1603.	1.9	44
39	Volume and biomass of trees in central Amazonia: influence of irregularly shaped and hollow trunks. Forest Ecology and Management, 2006, 227, 14-21.	1.4	43
40	Floristic relationships of terra firme forests in the Brazilian Amazon. Forest Ecology and Management, 2001, 146, 169-179.	1.4	37
41	Conservation and management implications of nest-site selection of the sympatric crocodilians Melanosuchus niger and Caiman crocodilus in Central Amazonia, Brazil. Biological Conservation, 2011, 144, 913-919.	1.9	36
42	Both near-surface and satellite remote sensing confirm drought legacy effect on tropical forest leaf phenology after 2015/2016 ENSO drought. Remote Sensing of Environment, 2020, 237, 111489.	4.6	35
43	Fire Damage in Seasonally Flooded and Upland Forests of the Central Amazon. Biotropica, 2014, 46, 643-646.	0.8	32
44	Evidence for Late Quaternary aeolian activity in the Roraima–Guyana Region. Catena, 2001, 43, 63-80.	2.2	31
45	Pervasive Alteration of Tree Communities in Undisturbed Amazonian Forests1. Biotropica, 2005, 37, 158-159.	0.8	30
46	Life cycle of bamboo in the southwestern Amazon and its relation to fire events. Biogeosciences, 2018, 15, 6087-6104.	1.3	29
47	RESERVA FLORESTAL DUCKE: DIVERSIDADE E COMPOSIÇÃO DA FLORA VASCULAR. Acta Amazonica, 1994, 24, 19-30.	0.3	25
48	Tropical Peat Accumulation in Central Amazonia. Wetlands, 2013, 33, 495-503.	0.7	25
49	Validating forest types based on geological and landâ€form features in central <scp>A</scp> mazonia. Journal of Vegetation Science, 2014, 25, 198-212.	1.1	25
50	Leaf decomposition and fine fuels in floodplain forests of the Rio Negro in the Brazilian Amazon. Journal of Tropical Ecology, 2013, 29, 455-458.	0.5	24
51	Are fluvial islands "real―islands for arboreal mammals? Uncovering the effect of patch size under the species–area relationship. Journal of Biogeography, 2017, 44, 1802-1812.	1.4	24
52	Spatial and temporal fluctuations in COVID-19 fatality rates in Brazilian hospitals. Nature Medicine, 2022, 28, 1476-1485.	15.2	24
53	Ethnobotanical groundâ€truthing: indigenous knowledge, floristic inventories and satellite imagery in the upper Rio Negro, Brazil. Journal of Biogeography, 2008, 35, 2237-2248.	1.4	23
54	Assessing the relationship between forest types and canopy tree beta diversity in Amazonia. Ecography, 2010, 33, 738-747.	2.1	23

BRUCE NELSON

#	Article	IF	CITATIONS
55	Leaf phenology as one important driver of seasonal changes in isoprene emissions in central Amazonia. Biogeosciences, 2018, 15, 4019-4032.	1.3	22
56	The ethnobotany of the PaumarÃ-Indians. Economic Botany, 1977, 31, 129-139.	0.8	20
57	Forest fragmentation impacts the seasonality of Amazonian evergreen canopies. Nature Communications, 2022, 13, 917.	5.8	20
58	Monitoring leaf phenology in moist tropical forests by applying a superpixel-based deep learning method to time-series images of tree canopies. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183, 19-33.	4.9	15
59	The influence of forest definition on landscape fragmentation assessment in Rondônia, Brazil. Ecological Indicators, 2009, 9, 1163-1168.	2.6	14
60	Impacts of selective logging on Amazon forest canopy structure and biomass with a LiDAR and photogrammetric survey sequence. Forest Ecology and Management, 2021, 500, 119648.	1.4	13
61	Bamboo phenology and life cycle drive seasonal and longâ€term functioning of Amazonian bambooâ€dominated forests. Journal of Ecology, 2021, 109, 860-876.	1.9	11
62	Projeto Flora Amazônica: eight years of binational botanical expeditions. Acta Amazonica, 1984, 14, 5-30.	0.3	11
63	Impact of Past Forest Fires on Bird Populations in Flooded Forests of the Cuini River in the Lowland Amazon. Biotropica, 2012, 44, 449-453.	0.8	10
64	Habitat amount hypothesis and passive sampling explain mammal species composition in Amazonian river islands. Biotropica, 2019, 51, 84-92.	0.8	10
65	Fluorescence parameters among leaf photosynthesis-related traits are the best proxies for CO2 assimilation in Central Amazon trees. Revista Brasileira De Botanica, 2019, 42, 239-247.	0.5	8
66	The CO ₂ record at the Amazon Tall Tower Observatory: A new opportunity to study processes on seasonal and interâ€annual scales. Global Change Biology, 2022, 28, 588-611.	4.2	8
67	Regional distribution of large blowdown patches across Amazonia in 2005 caused by a single convective squall line. Geophysical Research Letters, 2017, 44, 7793-7798.	1.5	7
68	Tree Regeneration Under Different Land-Use Mosaics in the Brazilian Amazon's "Arc of Deforestation― Environmental Management, 2015, 56, 342-354.	1.2	6
69	Observations on the pollination of Rhabdodendron macrophyllum (Spruce ex Benth.) Huber Acta Amazonica, 1984, 14, 411-426.	0.3	3
70	Distributional and ecological notes on Polygonanthus amazonicus Ducke. Acta Amazonica, 1985, 15, 63-70.	0.3	2