Jiayang Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/2627889/jiayang-li-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 15,891 151 125 h-index g-index citations papers 6.51 163 15.6 21,154 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
151	A map of rice genome variation reveals the origin of cultivated rice. <i>Nature</i> , 2012 , 490, 497-501	50.4	994
150	Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. <i>Nature Genetics</i> , 2010 , 42, 541-4	36.3	851
149	Control of tillering in rice. <i>Nature</i> , 2003 , 422, 618-21	50.4	756
148	Natural variation at the DEP1 locus enhances grain yield in rice. <i>Nature Genetics</i> , 2009 , 41, 494-7	36.3	645
147	Genomic variation in 3,010 diverse accessions of Asian cultivated rice. <i>Nature</i> , 2018 , 557, 43-49	50.4	582
146	DWARF 53 acts as a repressor of strigolactone signalling in rice. <i>Nature</i> , 2013 , 504, 401-5	50.4	475
145	DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. <i>Plant Cell</i> , 2009 , 21, 1512-25	11.6	431
144	Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture. <i>Plant Cell</i> , 2013 , 25, 3743-59	11.6	417
143	Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. <i>Genetics</i> , 1998 , 150, 899-909	4	392
142	Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 21	766-5	354
141	Molecular basis of plant architecture. Annual Review of Plant Biology, 2008, 59, 253-79	30.7	339
140	Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. <i>Nature Genetics</i> , 2015 , 47, 834-8	36.3	334
139	Copy number variation at the GL7 locus contributes to grain size diversity in rice. <i>Nature Genetics</i> , 2015 , 47, 944-8	36.3	317
138	A phenylalanine in DGAT is a key determinant of oil content and composition in maize. <i>Nature Genetics</i> , 2008 , 40, 367-72	36.3	317
137	Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 21534-9	11.5	298
136	Genes from wild rice improve yield. <i>Nature</i> , 1996 , 384, 223-224	50.4	289
135	BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. <i>Plant Cell</i> , 2003 , 15, 2020-31	11.6	273

134	DWARF14 is a non-canonical hormone receptor for strigolactone. <i>Nature</i> , 2016 , 536, 469-73	50.4	266
133	Molecular genetic dissection of quantitative trait loci regulating rice grain size. <i>Annual Review of Genetics</i> , 2014 , 48, 99-118	14.5	239
132	Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. <i>Nature Plants</i> , 2016 , 2, 16139	11.5	221
131	Strigolactone Signaling in Arabidopsis Regulates Shoot Development by Targeting D53-Like SMXL Repressor Proteins for Ubiquitination and Degradation. <i>Plant Cell</i> , 2015 , 27, 3128-42	11.6	216
130	TAC1, a major quantitative trait locus controlling tiller angle in rice. <i>Plant Journal</i> , 2007 , 52, 891-8	6.9	208
129	Genetic Regulation of Shoot Architecture. Annual Review of Plant Biology, 2018, 69, 437-468	30.7	205
128	LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. <i>Cell Research</i> , 2007 , 17, 402-10	24.7	202
127	Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. <i>Genome Biology</i> , 2017 , 18, 161	18.3	190
126	Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology. <i>Plant Cell</i> , 2000 , 12, 405-18	11.6	186
125	Crystal structures of two phytohormone signal-transducing Mhydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. <i>Cell Research</i> , 2013 , 23, 436-9	24.7	185
124	QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. <i>Genome</i> , 2004 , 47, 697-704	2.4	179
123	Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. <i>Nature Communications</i> , 2015 , 6, 6258	17.4	178
122	Rational design of high-yield and superior-quality rice. <i>Nature Plants</i> , 2017 , 3, 17031	11.5	155
121	Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. <i>Genetics</i> , 2004 , 168, 2187-95	4	152
120	A proposed regulatory framework for genome-edited crops. <i>Nature Genetics</i> , 2016 , 48, 109-11	36.3	148
119	Branching in rice. Current Opinion in Plant Biology, 2011 , 14, 94-9	9.9	147
118	Expression of the Nitrate Transporter Gene Confers High Yield and Early Maturation in Rice. <i>Plant Cell</i> , 2018 , 30, 638-651	11.6	145
117	Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11102-7	11.5	140

116	A single transcription factor promotes both yield and immunity in rice. <i>Science</i> , 2018 , 361, 1026-1028	33.3	138
115	Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. <i>Euphytica</i> , 2007 , 154, 317-339	2.1	135
114	Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. <i>Nature Biotechnology</i> , 2020 , 38, 875-882	44.5	133
113	Construction of a Genome-Wide Mutant Library in Rice Using CRISPR/Cas9. <i>Molecular Plant</i> , 2017 , 10, 1238-1241	14.4	127
112	Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. <i>Plant Cell</i> , 2006 , 18, 308-20	11.6	122
111	Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 4821-6	11.5	120
110	Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. <i>Nature Plants</i> , 2019 , 5, 480-485	11.5	116
109	IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. <i>Cell Research</i> , 2017 , 27, 1128-1141	24.7	115
108	The plant architecture of rice (Oryza sativa). Plant Molecular Biology, 2005, 59, 75-84	4.6	114
107	Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. <i>Cell Research</i> , 2015 , 25, 1219-36	24.7	110
106	Degradation of MONOCULM 1 by APC/C(TAD1) regulates rice tillering. <i>Nature Communications</i> , 2012 , 3, 750	17.4	110
105	Breeding high-yield superior quality hybrid super rice by rational design. <i>National Science Review</i> , 2016 , 3, 283-294	10.8	108
104	Silencing of phosphoethanolamine N-methyltransferase results in temperature-sensitive male sterility and salt hypersensitivity in Arabidopsis. <i>Plant Cell</i> , 2002 , 14, 2031-43	11.6	101
103	Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 12844-12849	11.5	100
102	Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 2379-84	11.5	96
101	Towards molecular breeding and improvement of rice in China. <i>Trends in Plant Science</i> , 2005 , 10, 610-4	13.1	90
100	Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 11199-204	11.5	88
99	Structural basis for recognition of diverse transcriptional repressors by the TOPLESS family of corepressors. <i>Science Advances</i> , 2015 , 1, e1500107	14.3	86

98	A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. <i>Nature Communications</i> , 2017 , 8, 14789	17.4	85
97	Signalling and responses to strigolactones and karrikins. <i>Current Opinion in Plant Biology</i> , 2014 , 21, 23-29	99.9	85
96	A route to de novo domestication of wild allotetraploid rice. <i>Cell</i> , 2021 , 184, 1156-1170.e14	56.2	81
95	MONOCULM 3, an ortholog of WUSCHEL in rice, is required for tiller bud formation. <i>Journal of Genetics and Genomics</i> , 2015 , 42, 71-8	4	73
94	Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana. <i>Cell Research</i> , 2018 , 28, 448-461	24.7	71
93	Transcriptional regulation of strigolactone signalling in Arabidopsis. <i>Nature</i> , 2020 , 583, 277-281	50.4	68
92	Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling. <i>Nature Communications</i> , 2015 , 6, 7395	17.4	65
91	Mitogen-Activated Protein Kinase Cascade MKK7-MPK6 Plays Important Roles in Plant Development and Regulates Shoot Branching by Phosphorylating PIN1 in Arabidopsis. <i>PLoS Biology</i> , 2016 , 14, e1002550	9.7	65
90	xCas9 expands the scope of genome editing with reduced efficiency in rice. <i>Plant Biotechnology Journal</i> , 2019 , 17, 709-711	11.6	65
89	High-efficiency prime editing with optimized, paired pegRNAs in plants. <i>Nature Biotechnology</i> , 2021 , 39, 923-927	44.5	61
88	Genomic basis of geographical adaptation to soil nitrogen in rice. <i>Nature</i> , 2021 , 590, 600-605	50.4	59
87	Tissue-Specific Ubiquitination by IPA1 INTERACTING PROTEIN1 Modulates IPA1 Protein Levels to Regulate Plant Architecture in Rice. <i>Plant Cell</i> , 2017 , 29, 697-707	11.6	58
86	Deficient plastidic fatty acid synthesis triggers cell death by modulating mitochondrial reactive oxygen species. <i>Cell Research</i> , 2015 , 25, 621-33	24.7	57
85	Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. <i>Plant Biotechnology Journal</i> , 2018 , 16, 292-297	11.6	56
84	A Core Regulatory Pathway Controlling Rice Tiller Angle Mediated by the -Dependent Asymmetric Distribution of Auxin. <i>Plant Cell</i> , 2018 , 30, 1461-1475	11.6	55
83	Molecular dissection of complex agronomic traits of rice: a team effort by Chinese scientists in recent years. <i>National Science Review</i> , 2014 , 1, 253-276	10.8	49
82	Rice Ferredoxin-Dependent Glutamate Synthase Regulates Nitrogen-Carbon Metabolomes and Is Genetically Differentiated between japonica and indica Subspecies. <i>Molecular Plant</i> , 2016 , 9, 1520-1534	14.4	48
81	Genome analysis of Taraxacum kok-saghyz Rodin provides new insights into rubber biosynthesis. National Science Review, 2018 , 5, 78-87	10.8	47

80	Strigolactone promotes cytokinin degradation through transcriptional activation of in rice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14319-1432-	4 ^{11.5}	46
79	Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice. <i>Nature Communications</i> , 2018 , 9, 735	17.4	45
78	SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. <i>Nature Communications</i> , 2019 , 10, 2738	17.4	44
77	A D53 repression motif induces oligomerization of TOPLESS corepressors and promotes assembly of a corepressor-nucleosome complex. <i>Science Advances</i> , 2017 , 3, e1601217	14.3	40
76	Strigolactone and Karrikin Signaling Pathways Elicit Ubiquitination and Proteolysis of SMXL2 to Regulate Hypocotyl Elongation in Arabidopsis. <i>Plant Cell</i> , 2020 , 32, 2251-2270	11.6	38
75	Malate Circulation: Linking Chloroplast Metabolism to Mitochondrial ROS. <i>Trends in Plant Science</i> , 2020 , 25, 446-454	13.1	38
74	Tiller Bud Formation Regulators MOC1 and MOC3 Cooperatively Promote Tiller Bud Outgrowth by Activating FON1 Expression in Rice. <i>Molecular Plant</i> , 2019 , 12, 1090-1102	14.4	36
73	Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice. <i>Science China Life Sciences</i> , 2018 , 61, 122-7	1 2 55	36
72	A Strigolactone Biosynthesis Gene Contributed to the Green Revolution in Rice. <i>Molecular Plant</i> , 2020 , 13, 923-932	14.4	35
71	Molecular marker-assisted selection for yield-enhancing genes in the progeny of 2311D. rufipogon[Jusing SSR. <i>Euphytica</i> , 2004 , 139, 159-165	2.1	33
70	Designing future crops: challenges and strategies for sustainable agriculture. <i>Plant Journal</i> , 2021 , 105, 1165-1178	6.9	31
69	An Arabidopsis Secondary Metabolite Directly Targets Expression of the Bacterial Type III Secretion System to Inhibit Bacterial Virulence. <i>Cell Host and Microbe</i> , 2020 , 27, 601-613.e7	23.4	29
68	OsBRXL4 Regulates Shoot Gravitropism and Rice Tiller Angle through Affecting LAZY1 Nuclear Localization. <i>Molecular Plant</i> , 2019 , 12, 1143-1156	14.4	29
67	Towards a deeper haplotype mining of complex traits in rice with RFGB v2.0. <i>Plant Biotechnology Journal</i> , 2020 , 18, 14-16	11.6	29
66	The Rice Circadian Clock Regulates Tiller Growth and Panicle Development Through Strigolactone Signaling and Sugar Sensing. <i>Plant Cell</i> , 2020 , 32, 3124-3138	11.6	28
65	Rice functional genomics and breeding database (RFGB)-3K-rice SNP and InDel sub-database. <i>Chinese Science Bulletin</i> , 2015 , 60, 367-371	2.9	27
64	Glabrous Rice 1, encoding a homeodomain protein, regulates trichome development in rice. <i>Rice</i> , 2012 , 5, 32	5.8	27
63	Rice DWARF14 acts as an unconventional hormone receptor for strigolactone. <i>Journal of Experimental Botany</i> , 2018 , 69, 2355-2365	7	26

(2018-2010)

62	Identification of chromosome regions conferring dry matter accumulation and photosynthesis in wheat (Triticum aestivum L.). <i>Euphytica</i> , 2010 , 171, 145-156	2.1	26
61	Growing Slowly 1 locus encodes a PLS-type PPR protein required for RNA editing and plant development in Arabidopsis. <i>Journal of Experimental Botany</i> , 2016 , 67, 5687-5698	7	26
60	The Arabidopsis CROWDED NUCLEI genes regulate seed germination by modulating degradation of ABI5 protein. <i>Journal of Integrative Plant Biology</i> , 2016 , 58, 669-78	8.3	25
59	Retrospective and perspective of rice breeding in China. <i>Journal of Genetics and Genomics</i> , 2018 , 45, 603	3 <u>-</u> 612	25
58	DWARF14, A Receptor Covalently Linked with the Active Form of Strigolactones, Undergoes Strigolactone-Dependent Degradation in Rice. <i>Frontiers in Plant Science</i> , 2017 , 8, 1935	6.2	24
57	Validation of DGAT1-2 polymorphisms associated with oil content and development of functional markers for molecular breeding of high-oil maize. <i>Molecular Breeding</i> , 2012 , 29, 939-949	3.4	24
56	Dynamic expression reveals a two-step patterning of WUS and CLV3 during axillary shoot meristem formation in Arabidopsis. <i>Journal of Plant Physiology</i> , 2017 , 214, 1-6	3.6	23
55	Identification of microRNAs in rice root in response to nitrate and ammonium. <i>Journal of Genetics and Genomics</i> , 2016 , 43, 651-661	4	23
54	Transnitrosylation Mediated by the Non-canonical Catalase ROG1 Regulates Nitric Oxide Signaling in Plants. <i>Developmental Cell</i> , 2020 , 53, 444-457.e5	10.2	22
53	Karrikin Signaling Acts Parallel to and Additively with Strigolactone Signaling to Regulate Rice Mesocotyl Elongation in Darkness. <i>Plant Cell</i> , 2020 , 32, 2780-2805	11.6	22
52	ECarotene Isomerase Suppresses Tillering in Rice through the Coordinated Biosynthesis of Strigolactone and Abscisic Acid. <i>Molecular Plant</i> , 2020 , 13, 1784-1801	14.4	21
51	Recent advances in molecular basis for strigolactone action. <i>Science China Life Sciences</i> , 2018 , 61, 277-28	3 8 .5	21
50	Regulation of Rice Tillering by RNA-Directed DNA Methylation at Miniature Inverted-Repeat Transposable Elements. <i>Molecular Plant</i> , 2020 , 13, 851-863	14.4	19
49	A transgenic wheat with a stilbene synthase gene resistant to powdery mildew obtained by biolistic method. <i>Science Bulletin</i> , 2000 , 45, 634-638		19
48	Generating broad-spectrum tolerance to ALS-inhibiting herbicides in rice by base editing. <i>Science China Life Sciences</i> , 2021 , 64, 1624-1633	8.5	18
47	Regulation of mitochondrial NAD pool via NAD transporter 2 is essential for matrix NADH homeostasis and ROS production in Arabidopsis. <i>Science China Life Sciences</i> , 2019 , 62, 991-1002	8.5	17
46	Development of gene-tagged molecular markers for starch synthesis-related genes in rice. <i>Science Bulletin</i> , 2010 , 55, 3768-3777		17
45	Detection of major loci associated with the variation of 18 important agronomic traits between Solanum pimpinellifolium and cultivated tomatoes. <i>Plant Journal</i> , 2018 , 95, 312-323	6.9	16

44	Deletion of the initial 45 residues of ARR18 induces cytokinin response in Arabidopsis. <i>Journal of Genetics and Genomics</i> , 2012 , 39, 37-46	4	16
43	FIS1 encodes a GA2-oxidase that regulates fruit firmness in tomato. <i>Nature Communications</i> , 2020 , 11, 5844	17.4	16
42	DROOPY LEAF1 controls leaf architecture by orchestrating early brassinosteroid signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21766-21774	11.5	16
41	Identification of Regulatory DNA Elements Using Genome-wide Mapping of DNase I Hypersensitive Sites during Tomato Fruit Development. <i>Molecular Plant</i> , 2016 , 9, 1168-1182	14.4	16
40	Hybrid Rice: Genetics, Breeding, and Seed Production 2010 , 15-158		13
39	The dual effects of ethylene on the negative gravicurvature of arabidopsis inflorescence, an intriguing action model for the plant hormone ethylene. <i>Science Bulletin</i> , 2001 , 46, 279-283		13
38	Differential expression of triplicate phosphoribosylanthranilate isomerase isogenes in the tryptophan biosynthetic pathway of Arabidopsis thaliana (L.) Heynh. <i>Planta</i> , 2001 , 212, 641-7	4.7	13
37	Microsatellite markers in rice: abundance, diversity, and applications 2008 , 117-135		12
36	Identification of brassinosteroid responsive genes in Arabidopsis by cDNA array. <i>Science in China Series C: Life Sciences</i> , 2001 , 44, 637-43		12
35	Involvement of a Putative Bipartite Transit Peptide in Targeting Rice Pheophorbide a Oxygenase into Chloroplasts for Chlorophyll Degradation during Leaf Senescence. <i>Journal of Genetics and Genomics</i> , 2016 , 43, 145-54	4	10
34	Rice functional genomics: decades' efforts and roads ahead. Science China Life Sciences, 2021, 65, 33	8.5	10
33	Action of strigolactones in plants. <i>The Enzymes</i> , 2014 , 35, 57-84	2.3	9
32	Combination of Eight Alleles at Four Quantitative Trait Loci Determines Grain Length in Rice. <i>PLoS ONE</i> , 2016 , 11, e0150832	3.7	9
31	ScCas9 recognizes NNG protospacer adjacent motif in genome editing of rice. <i>Science China Life Sciences</i> , 2020 , 63, 450-452	8.5	7
30	Grain Quality 2013 , 237-254		7
29	Advances in the regulation and crosstalks of phytohormones. Science Bulletin, 2009, 54, 4069-4082		6
28	Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation. <i>Nature Plants</i> , 2021 , 7, 1108-1118	11.5	6
27	Rapid and specific isolation of intact mitochondria from Arabidopsis leaves. <i>Journal of Genetics and Genomics</i> , 2020 , 47, 65-68	4	5

(2016-2021)

26	Enhancing rice grain production by manipulating the naturally evolved cis-regulatory element-containing inverted repeat sequence of OsREM20. <i>Molecular Plant</i> , 2021 , 14, 997-1011	14.4	5
25	Molecular mechanisms underlying plant architecture and its environmental plasticity in rice. <i>Molecular Breeding</i> , 2019 , 39, 1	3.4	5
24	Expanding the scope of genome editing with SpG and SpRY variants in rice. <i>Science China Life Sciences</i> , 2021 , 64, 1784-1787	8.5	5
23	Strigolactones 2017 , 327-359		4
22	Monitoring gene expression by cDNA array. Science Bulletin, 1999, 44, 441-444		4
21	Molecular basis underlying rice tiller angle: Current progress and future perspectives <i>Molecular Plant</i> , 2021 ,	14.4	4
20	Rice Protein Tagging Project: A Call for International Collaborations on Genome-wide In-Locus Tagging of Rice Proteins. <i>Molecular Plant</i> , 2020 , 13, 1663-1665	14.4	4
19	Profiling of RNA ribose methylation in Arabidopsis thaliana. <i>Nucleic Acids Research</i> , 2021 , 49, 4104-4119	20.1	4
18	Short- and long-term challenges in crop breeding. <i>National Science Review</i> , 2021 , 8, nwab002	10.8	4
17	Rice Plant Architecture: Molecular Basis and Application in Breeding 2018 , 129-154		3
16	Fine-mapping of an Arabidopsis cell death mutation locus. <i>Science in China Series C: Life Sciences</i> , 2000 , 43, 138-45		3
15	Extensive sequence divergence between the reference genomes of Taraxacum kok-saghyz and Taraxacum mongolicum <i>Science China Life Sciences</i> , 2021 , 65, 515	8.5	3
14	LAZY2 controls rice tiller angle through regulating starch biosynthesis in gravity-sensing cells. <i>New Phytologist</i> , 2021 , 231, 1073-1087	9.8	3
13	FED: a web tool for foreign element detection of genome-edited organism. <i>Science China Life Sciences</i> , 2021 , 64, 167-170	8.5	3
12	Nitric oxide negatively regulates gibberellin signaling to coordinate growth and salt tolerance in Arabidopsis <i>Journal of Genetics and Genomics</i> , 2022 ,	4	3
11	Combination of twelve alleles at six quantitative trait loci determines grain weight in rice. <i>PLoS ONE</i> , 2017 , 12, e0181588	3.7	2
10	Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size <i>Nature Biotechnology</i> , 2022 ,	44.5	2
9	Evolution of Strigolactone Perception by Seeds of Parasitic Plants: Reinventing the Wheel. <i>Molecular Plant</i> , 2016 , 9, 493-5	14.4	1

- 8 Mapping and characterization of a tiller-spreading mutantlazy-2 in rice. Science Bulletin, 2003, 48, 2715-2717 1
- Breeding future crops to feed the world through de novo domestication.. *Nature Communications*, **2022**, 13, 1171

17.4 0

- 6 Resistant starch formation in rice: Genetic regulation and beyond.. *Plant Communications*, **2022**, 3, 100329
 - O

- 5 Dedication: Longping Yuan: Rice Breeder and World Hunger Fighter **2010**, 1-13
- Advances in Arabidopsis research in China from 2006 to 2007. Science Bulletin, 2007, 52, 1729-1733
- Expression of Arabidopsis tryptophan biosynthetic pathway genes: effect of the 5' coding region of phosphoribosylanthranilate isomerase gene. *Science in China Series C: Life Sciences*, **1999**, 42, 274-80
- Rice geographic adaption to poor soil: novel insights for sustainable agriculture. *Molecular Plant*, **2021**, 14, 369-371

14.4

Immunopurification of Mitochondria from Arabidopsis. Current Protocols, 2021, 1, e34