Chunzhen Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2627599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unexpected Li ₂ O ₂ Film Growth on Carbon Nanotube Electrodes with CeO ₂ Nanoparticles in Li–O ₂ Batteries. Nano Letters, 2016, 16, 2969-2974.	4.5	138
2	Chemical Recognition of Active Oxygen Species on the Surface of Oxygen Evolution Reaction Electrocatalysts. Angewandte Chemie - International Edition, 2017, 56, 8652-8656.	7.2	115
3	Phosphate Ion Functionalization of Perovskite Surfaces for Enhanced Oxygen Evolution Reaction. Journal of Physical Chemistry Letters, 2017, 8, 3466-3472.	2.1	109
4	Chemical vs Electrochemical Formation of Li ₂ CO ₃ as a Discharge Product in Li–O ₂ /CO ₂ Batteries by Controlling the Superoxide Intermediate. Journal of Physical Chemistry Letters, 2017, 8, 214-222.	2.1	108
5	Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors. Physical Chemistry Chemical Physics, 2013, 15, 19730.	1.3	101
6	Structurally Tuning Li ₂ O ₂ by Controlling the Surface Properties of Carbon Electrodes: Implications for Li–O ₂ Batteries. Chemistry of Materials, 2016, 28, 8006-8015.	3.2	86
7	Electrochemical Reduction of CO ₂ Mediated by Quinone Derivatives: Implication for Li–CO ₂ Battery. Journal of Physical Chemistry C, 2018, 122, 6546-6554.	1.5	86
8	The applications and prospect of fuel cells in medical field: A review. Renewable and Sustainable Energy Reviews, 2017, 67, 574-580.	8.2	85
9	Critically Examining the Role of Nanocatalysts in Li–O ₂ Batteries: Viability toward Suppression of Recharge Overpotential, Rechargeability, and Cyclability. ACS Energy Letters, 2018, 3, 592-597.	8.8	82
10	Factors Controlling the Redox Activity of Oxygen in Perovskites: From Theory to Application for Catalytic Reactions. Catalysts, 2017, 7, 149.	1.6	79
11	Cation insertion to break the activity/stability relationship for highly active oxygen evolution reaction catalyst. Nature Communications, 2020, 11, 1378.	5.8	79
12	Revealing pH-Dependent Activities and Surface Instabilities for Ni-Based Electrocatalysts during the Oxygen Evolution Reaction. ACS Energy Letters, 2018, 3, 2884-2890.	8.8	74
13	Structuring Porous Ironâ€Nitrogenâ€Doped Carbon in a Core/Shell Geometry for the Oxygen Reduction Reaction. Advanced Energy Materials, 2014, 4, 1400840.	10.2	73
14	Revealing the Reactivity of the Iridium Trioxide Intermediate for the Oxygen Evolution Reaction in Acidic Media. Chemistry of Materials, 2019, 31, 5845-5855.	3.2	67
15	Determining the Facile Routes for Oxygen Evolution Reaction by <i>In Situ</i> Probing of Li–O ₂ Cells with Conformal Li ₂ O ₂ Films. Journal of the American Chemical Society, 2018, 140, 6190-6193.	6.6	64
16	Chemical Recognition of Active Oxygen Species on the Surface of Oxygen Evolution Reaction Electrocatalysts. Angewandte Chemie, 2017, 129, 8778-8782.	1.6	54
17	Complex Impedance with Transmission Line Model and Complex Capacitance Analysis of Ion Transport and Accumulation in Hierarchical Core-Shell Porous Carbons. Journal of the Electrochemical Society, 2013, 160, H271-H278.	1.3	50
18	Designing Redox‧table Cobalt–Polypyridyl Complexes for Redox Flow Batteries: Spinâ€Crossover Delocalizes Excess Charge. Advanced Energy Materials, 2018, 8, 1702897.	10.2	38

CHUNZHEN YANG

#	Article	IF	CITATIONS
19	Microwave-assisted microemulsion synthesis of carbon supported Pt-WO3 nanoparticles as an electrocatalyst for methanol oxidation. Electrochimica Acta, 2012, 75, 262-272.	2.6	34
20	Interfacial Interactions as an Electrochemical Tool To Understand Mo-Based Catalysts for the Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 828-836.	5.5	34
21	Improving cell performance and alleviating performance degradation by constructing a novel structure of membrane electrode assembly (MEA) of DMFCs. International Journal of Hydrogen Energy, 2019, 44, 32231-32239.	3.8	33
22	Facile synthesis of porous C-doped C ₃ N ₄ : fast charge separation and enhanced photocatalytic hydrogen evolution. New Journal of Chemistry, 2020, 44, 17891-17898.	1.4	27
23	An all-nanosheet OER/ORR bifunctional electrocatalyst for both aprotic and aqueous Li–O ₂ batteries. Nanoscale, 2019, 11, 2855-2862.	2.8	26
24	Confining Pt nanoparticles in porous carbon structures for achieving durable electrochemical performance. Nanoscale, 2014, 6, 11863-11870.	2.8	25
25	Highly Alloyed PtRu Nanoparticles Confined in Porous Carbon Structure as a Durable Electrocatalyst for Methanol Oxidation. ACS Applied Materials & Interfaces, 2014, 6, 18938-18950.	4.0	23
26	Investigation of the electrocatalytic mechanisms of urea oxidation reaction on the surface of transition metal oxides. Journal of Colloid and Interface Science, 2022, 620, 442-453.	5.0	22
27	Enhanced light harvesting and charge separation of carbon and oxygen co-doped carbon nitride as excellent photocatalyst for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2022, 612, 367-376.	5.0	18
28	Uniform dispersion of 1 : 1 PtRu nanoparticles in ordered mesoporous carbon for improved methanol oxidation. Physical Chemistry Chemical Physics, 2013, 15, 13570.	1.3	17
29	Hierarchical macropore-mesoporous shell carbon dispersed with Li4Ti5O12 for excellent high rate sub-freezing Li-ion battery performance. Carbon, 2019, 145, 614-621.	5.4	17
30	Balancing the electron conduction and mass transfer: Effect of nickel foam thickness on the performance of an alkaline direct ethanol fuel cell (ADEFC) with 3D porous anode. International Journal of Hydrogen Energy, 2020, 45, 19801-19812.	3.8	17
31	Nickel borate with a 3D hierarchical structure as a robust and efficient electrocatalyst for urea oxidation. Environmental Science: Nano, 2021, 8, 1326-1335.	2.2	17
32	Synergistic effect of Co catalysts with atomically dispersed CoN _{<i>x</i>} active sites on ammonia borane hydrolysis for hydrogen generation. Journal of Materials Chemistry A, 2022, 10, 5580-5592.	5.2	17
33	Mitigating the Degradation of Carbon-Supported Pt Electrocatalysts by Tungsten Oxide Nanoplates. Electrochimica Acta, 2016, 188, 529-536.	2.6	14
34	Sulfate modified g-C ₃ N ₄ with enhanced photocatalytic activity towards hydrogen evolution: the role of sulfate in photocatalysis. Physical Chemistry Chemical Physics, 2020, 22, 10116-10122.	1.3	13
35	Electrochemical Preparation of Iridium Hydroxide Nanosheets with Ordered Honeycomb Structures for the Oxygen Evolution Reaction in Acid. ACS Applied Energy Materials, 2022, 5, 6869-6877.	2.5	6
36	The role of proton dynamics on the catalyst-electrolyte interface in the oxygen evolution reaction. Chinese Journal of Catalysis, 2022, 43, 139-147.	6.9	5

#	Article	IF	CITATIONS
37	Bifunctional OER-ORR electrodes for metal-air batteries. , 2021, , 139-186.		4
38	Impedance Analysis of Ion Transportation in Hierarchical Porous Core-Shell Carbons with Transmission Line Model. ECS Transactions, 2013, 45, 51-63.	0.3	0
39	Nickel Foam Electrode with Low Catalyst Loading and High Performance for Alkaline Direct Alcohol Fuel Cells. , 0, , .		0