James Maksymetz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2627151/publications.pdf

Version: 2024-02-01

		1040056	1372567	
11	455	9	10	
papers	citations	h-index	g-index	
11	11	11	688	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Targeting metabotropic glutamate receptors for novel treatments of schizophrenia. Molecular Brain, 2017, 10, 15.	2.6	113
2	Targeting Muscarinic Acetylcholine Receptors for the Treatment of Psychiatric and Neurological Disorders. Trends in Pharmacological Sciences, 2019, 40, 1006-1020.	8.7	77
3	M1-positive allosteric modulators lacking agonist activity provide the optimal profile for enhancing cognition. Neuropsychopharmacology, 2018, 43, 1763-1771.	5.4	56
4	mGlu2 and mGlu3 Negative Allosteric Modulators Divergently Enhance Thalamocortical Transmission and Exert Rapid Antidepressant-like Effects. Neuron, 2020, 105, 46-59.e3.	8.1	56
5	Mechanisms underlying prelimbic prefrontal cortex mGlu3/mGlu5-dependent plasticity and reversal learning deficits following acute stress. Neuropharmacology, 2019, 144, 19-28.	4.1	43
6	Acute restraint stress redirects prefrontal cortex circuit function through mGlu5 receptor plasticity on somatostatin-expressing interneurons. Neuron, 2022, 110, 1068-1083.e5.	8.1	36
7	M1 Muscarinic Receptors Modulate Fear-Related Inputs to the Prefrontal Cortex: Implications for Novel Treatments of Posttraumatic Stress Disorder. Biological Psychiatry, 2019, 85, 989-1000.	1.3	25
8	mGlu1 potentiation enhances prelimbic somatostatin interneuron activity to rescue schizophrenia-like physiological and cognitive deficits. Cell Reports, 2021, 37, 109950.	6.4	21
9	PF-06827443 Displays Robust Allosteric Agonist and Positive Allosteric Modulator Activity in High Receptor Reserve and Native Systems. ACS Chemical Neuroscience, 2018, 9, 2218-2224.	3.5	19
10	Biased M ₁ receptor–positive allosteric modulators reveal role of phospholipase D in M ₁ -dependent rodent cortical plasticity. Science Signaling, 2019, 12, .	3.6	9
11	Selective mGlu 1 potentiation enhances cortical inhibition to rescue schizophreniaâ€like cognitive and social deficits. FASEB Journal, 2021, 35, .	0.5	0