Volodymyr Novikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2627032/publications.pdf

Version: 2024-02-01

840776 29 336 11 citations h-index papers

g-index 29 29 29 422 docs citations times ranked citing authors all docs

888059

17

#	Article	IF	CITATIONS
1	Dyeing of polyester fibers with sulfur- and nitrogen-containing anthraquinone derivatives. Chemical Industry and Chemical Engineering Quarterly, 2022, 28, 47-55.	0.7	2
2	Evaluation of Anticonvulsant Activity of Dual COX-2/5-LOX Inhibitor Darbufelon and Its Novel Analogues. Scientia Pharmaceutica, 2021, 89, 22.	2.0	5
3	Study of 1,3-dipolar cycloaddition of amino-acid azomethines and Juglone. Synthetic Communications, 2020, 50, 3165-3173.	2.1	2
4	Synthesis, characterization and investigation of antibacterial and antifungal activities of novel 1,3-butadiene compounds. Synthetic Communications, 2020, 50, 3234-3244.	2.1	8
5	TOTAL PHENOLIC AND FLAVONOID CONTENT, ANTIOXIDANT ACTIVITY AND ANTIMICROBIAL POTENTIAL OF PHLOMIS PUNGENS WILLD. Polonia University Scientific Journal, 2020, 37, 133-139.	0.1	1
6	Investigation of the extract's composition of Viper's bugloss (Echium vulgare). Ukrainica Bioorganica Acta, 2020, 15, 42-46.	0.2	3
7	Regioselective IED Diels-Alder Reaction of Bis-(4,6-dichloro-[1,3,5]triazin- 2-yl)-diazene with Furan and Its Molecular Mechanism. Letters in Organic Chemistry, 2020, 17, 639-644.	0.5	0
8	Synthesis and Antimicrobial Activity of Novel Thiazoles with Reactive Functional Groups. ChemistrySelect, 2019, 4, 6965-6970.	1.5	9
9	Hydrogen Peroxide Oxygenation of Furan-2-carbaldehyde via an Easy, Green Method. Journal of Agricultural and Food Chemistry, 2019, 67, 3114-3117.	5.2	12
10	Anthra[1,2-d][1,2,3]triazine-4,7,12(3H)-triones as a New Class of Antistaphylococcal Agents: Synthesis and Biological Evaluation. Molecules, 2019, 24, 4581.	3.8	11
11	Synthesis, Antimicrobial Properties, and Inhibition of Catalase Activity of 1,4-Naphtho- and Benzoquinone Derivatives Containing N-, S-, O-Substituted. Heteroatom Chemistry, 2019, 2019, 1-12.	0.7	23
12	Amidoxime-Functionalized (9,10-Dioxoantracen-1-yl)hydrazones. Chemistry and Chemical Technology, 2019, 13, 417-423.	1.1	0
13	Synthesis and investigation of antimicrobial and antioxidant activity of anthraquinonylhydrazones. Monatshefte Für Chemie, 2018, 149, 1111-1119.	1.8	9
14	The application of anthraquinone-based triazenes as equivalents of diazonium salts in reaction with methylene active compounds. Phosphorus, Sulfur and Silicon and the Related Elements, 2018, 193, 409-414.	1.6	8
15	Proton-Initiated Conversion of Dithiocarbamates of 9,10-Anthracenedione. Chemistry and Chemical Technology, 2018, 12, 300-304.	1.1	3
16	Computer-aided prediction and cytotoxicity evaluation of dithiocarbamates of 9,10-anthracenedione as new anticancer agents. SAR and QSAR in Environmental Research, 2017, 28, 355-366.	2.2	24
17	Synthesis and investigation of antioxidant activity of the dithiocarbamate derivatives of 9,10-anthracenedione. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2016, 147, 2093-2101.	1.8	21
18	Synthesis, antibacterial and antifungal evaluation of thio- or piperazinyl-substituted 1,4-naphthoquinone derivatives. Journal of Sulfur Chemistry, 2016, 37, 477-487.	2.0	12

#	Article	IF	CITATIONS
19	Design, Synthesis, Biological Evaluation, and Antioxidant and Cytotoxic Activity of Heteroatom-Substituted 1,4-Naphtho- and Benzoquinones. Chemical and Pharmaceutical Bulletin, 2015, 63, 1029-1039.	1.3	31
20	Synthesis and Anti-Platelet Activity of Thiosulfonate Derivatives Containing Quinone Moiety. Scientia Pharmaceutica, 2015, 83, 221-231.	2.0	13
21	Synthesis and chemoinformatics analysis of N-aryl- \hat{l}^2 -alanine derivatives. Research on Chemical Intermediates, 2015, 41, 7517-7540.	2.7	18
22	Novel anthraquinone-based derivatives as potent inhibitors for receptor tyrosine kinases. Indian Journal of Pharmaceutical Sciences, 2015, 77, 634.	1.0	15
23	Novel Synthesis of 5-Substituted 5H-Benzo[b]carbazole-6,11-diones via Double Buchwald–Hartwig Reaction. Synlett, 2014, 25, 2765-2768.	1.8	9
24	Nucleophilic substitution reactions of 1,4-naphthoquinone and biologic properties of novel S-, S,S-, N-, and N,S-substituted 1,4-naphthoquinone derivatives. Medicinal Chemistry Research, 2014, 23, 2140-2149.	2.4	33
25	Synthesis of N-Benzoyl-N'-(9,10-Dioxo-9,10-Dihydroanthacen-1-yl) Thioureas and Quantum-Chemical Analysis of the Reaction Passing. Chemistry and Chemical Technology, 2014, 8, 135-140.	1.1	9
26	Synthesis of novel 1,4-naphthoquinone derivatives: antibacterial and antifungal agents. Medicinal Chemistry Research, 2013, 22, 2879-2888.	2.4	34
27	Synthesis and Antibacterial and Antifungal Properties of Novel S-, N-, N,S-, and S,O-Substituted 1,4-Naphthoquinone Derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 955-966.	1.6	6
28	Reactions of 5-oxo-1-phenylpyrrolidine-3-carbohydrazides with 1,4-naphthoquinone derivatives and the properties of the obtained products. Research on Chemical Intermediates, 2011, 37, 1009-1027.	2.7	4
29	Synthesis, chemical properties, and antimicrobial activity of 2- and 2,3-substituted [(tetrahydro-2,4-dioxopyrimidin-1(2H)-yl)phenoxy]naphthalene-1,4-diones. Monatshefte Fýr Chemie, 2011, 142, 529-537.	1.8	11