List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2626599/publications.pdf Version: 2024-02-01

	94381	118793
5,443	37	62
citations	h-index	g-index
238	238	2241
docs citations	times ranked	citing authors
	citations 238	5,443 37 citations h-index 238 238

LUNSFOR KIM

#	Article	IF	CITATIONS
1	Phase-Field Models for Multi-Component Fluid Flows. Communications in Computational Physics, 2012, 12, 613-661.	0.7	390
2	Conservative multigrid methods for Cahn–Hilliard fluids. Journal of Computational Physics, 2004, 193, 511-543.	1.9	248
3	A continuous surface tension force formulation for diffuse-interface models. Journal of Computational Physics, 2005, 204, 784-804.	1.9	221
4	Solving the regularized, strongly anisotropic Cahn–Hilliard equation by an adaptive nonlinear multigrid method. Journal of Computational Physics, 2007, 226, 414-446.	1.9	162
5	Phase field modeling and simulation of three-phase flows. Interfaces and Free Boundaries, 2005, 7, 435-466.	0.2	142
6	Physical, mathematical, and numerical derivations of the Cahn–Hilliard equation. Computational Materials Science, 2014, 81, 216-225.	1.4	113
7	Phase field computations for ternary fluid flows. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 4779-4788.	3.4	112
8	An unconditionally gradient stable numerical method for solving the Allen–Cahn equation. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 1791-1803.	1.2	108
9	Analysis of the impact of COVID-19 on the correlations between crude oil and agricultural futures. Chaos, Solitons and Fractals, 2020, 136, 109896.	2.5	107
10	An unconditionally stable hybrid numerical method for solving the Allen–Cahn equation. Computers and Mathematics With Applications, 2010, 60, 1591-1606.	1.4	106
11	A conservative Allen–Cahn equation with a space–time dependent Lagrange multiplier. International Journal of Engineering Science, 2014, 84, 11-17.	2.7	94
12	A generalized continuous surface tension force formulation for phase-field models for multi-component immiscible fluid flows. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 3105-3112.	3.4	80
13	Two-dimensional Kelvin–Helmholtz instabilities of multi-component fluids. European Journal of Mechanics, B/Fluids, 2015, 49, 77-88.	1.2	79
14	A numerical method for the Cahn–Hilliard equation with a variable mobility. Communications in Nonlinear Science and Numerical Simulation, 2007, 12, 1560-1571.	1.7	77
15	Multiphase image segmentation using a phase-field model. Computers and Mathematics With Applications, 2011, 62, 737-745.	1.4	75
16	Conservative multigrid methods for ternary Cahn-Hilliard systems. Communications in Mathematical Sciences, 2004, 2, 53-77.	0.5	70
17	Conservative Allen–Cahn–Navier–Stokes system for incompressible two-phase fluid flows. Computers and Fluids, 2017, 156, 239-246.	1.3	66
18	Accurate contact angle boundary conditions for the Cahn–Hilliard equations. Computers and Fluids, 2011, 44, 178-186.	1.3	58

#	Article	IF	CITATIONS
19	Dynamics of a compound droplet in shear flow. International Journal of Heat and Fluid Flow, 2014, 50, 63-71.	1.1	54
20	A phase-field approach for minimizing the area of triply periodic surfaces with volume constraint. Computer Physics Communications, 2010, 181, 1037-1046.	3.0	53
21	A fast, robust, and accurate operator splitting method for phase-field simulations of crystal growth. Journal of Crystal Growth, 2011, 321, 176-182.	0.7	52
22	Numerical investigation of falling bacterial plumes caused by bioconvection in a three-dimensional chamber. European Journal of Mechanics, B/Fluids, 2015, 52, 120-130.	1.2	52
23	Fast local image inpainting based on the Allen–Cahn model. , 2015, 37, 65-74.		51
24	On the long time simulation of the Rayleigh–Taylor instability. International Journal for Numerical Methods in Engineering, 2011, 85, 1633-1647.	1.5	50
25	A phase-field fluid modeling and computation with interfacial profile correction term. Communications in Nonlinear Science and Numerical Simulation, 2016, 30, 84-100.	1.7	50
26	An efficient and stable compact fourth-order finite difference scheme for the phase field crystal equation. Computer Methods in Applied Mechanics and Engineering, 2017, 319, 194-216.	3.4	50
27	Numerical simulation of the three-dimensional Rayleigh–Taylor instability. Computers and Mathematics With Applications, 2013, 66, 1466-1474.	1.4	49
28	A practically unconditionally gradient stable scheme for the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si24.gif" display="inline" overflow="scroll"><mml:mi>N</mml:mi>-component Cahn–Hilliard system. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 1009-1019.</mml:math 	1.2	47
29	A conservative numerical method for the Cahn–Hilliard equation with Dirichlet boundary conditions in complex domains. Computers and Mathematics With Applications, 2013, 65, 102-115.	1.4	46
30	Basic Principles and Practical Applications of the Cahn–Hilliard Equation. Mathematical Problems in Engineering, 2016, 2016, 1-11.	0.6	45
31	Multi-component Cahn–Hilliard system with different boundary conditions in complex domains. Journal of Computational Physics, 2016, 323, 1-16.	1.9	45
32	Comparison study of the conservative Allen–Cahn and the Cahn–Hilliard equations. Mathematics and Computers in Simulation, 2016, 119, 35-56.	2.4	45
33	An unconditionally energy-stable second-order time-accurate scheme for the Cahn–Hilliard equation on surfaces. Communications in Nonlinear Science and Numerical Simulation, 2017, 53, 213-227.	1.7	45
34	A compact fourth-order finite difference scheme for the three-dimensional Cahn–Hilliard equation. Computer Physics Communications, 2016, 200, 108-116.	3.0	44
35	A second-order accurate non-linear difference scheme for the N -component Cahn–Hilliard system. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 4787-4799.	1.2	43
36	A comparison study of the Boussinesq and the variable density models on buoyancy-driven flows. Journal of Engineering Mathematics, 2012, 75, 15-27.	0.6	42

#	Article	IF	CITATIONS
37	A diffuse-interface model for axisymmetric immiscible two-phase flow. Applied Mathematics and Computation, 2005, 160, 589-606.	1.4	41
38	Finite Element Analysis of Schwarz P Surface Pore Geometries for Tissue-Engineered Scaffolds. Mathematical Problems in Engineering, 2012, 2012, 1-13.	0.6	40
39	Regularized Dirac delta functions for phase field models. International Journal for Numerical Methods in Engineering, 2012, 91, 269-288.	1.5	40
40	An efficient numerical method for simulating multiphase flows using a diffuse interface model. Physica A: Statistical Mechanics and Its Applications, 2015, 423, 33-50.	1.2	39
41	An explicit hybrid finite difference scheme for the Allen–Cahn equation. Journal of Computational and Applied Mathematics, 2018, 340, 247-255.	1.1	36
42	Phase-field simulations of crystal growth with adaptive mesh refinement. International Journal of Heat and Mass Transfer, 2012, 55, 7926-7932.	2.5	35
43	Computationally efficient adaptive time step method for the Cahn–Hilliard equation. Computers and Mathematics With Applications, 2017, 73, 1855-1864.	1.4	35
44	Three-dimensional volume reconstruction from slice data using phase-field models. Computer Vision and Image Understanding, 2015, 137, 115-124.	3.0	34
45	A simple and efficient finite difference method for the phase-field crystal equation on curved surfaces. Computer Methods in Applied Mechanics and Engineering, 2016, 307, 32-43.	3.4	31
46	An unconditionally stable second-order accurate method for systems of Cahn–Hilliard equations. Communications in Nonlinear Science and Numerical Simulation, 2020, 87, 105276.	1.7	31
47	Simple and efficient volume merging method for triply periodic minimal structures. Computer Physics Communications, 2021, 264, 107956.	3.0	31
48	A conservative numerical method for the Cahn–Hilliard equation in complex domains. Journal of Computational Physics, 2011, 230, 7441-7455.	1.9	30
49	A new phase-field model for a water–oil-surfactant system. Applied Mathematics and Computation, 2014, 229, 422-432.	1.4	28
50	An efficient linear second order unconditionally stable direct discretization method for the phase-field crystal equation on surfaces. Applied Mathematical Modelling, 2019, 67, 477-490.	2.2	28
51	Choindroitinase ABC I-Mediated Enhancement of Oncolytic Virus Spread and Anti Tumor Efficacy: A Mathematical Model. PLoS ONE, 2014, 9, e102499.	1.1	28
52	A fourth-order spatial accurate and practically stable compact scheme for the Cahn–Hilliard equation. Physica A: Statistical Mechanics and Its Applications, 2014, 409, 17-28.	1.2	27
53	A finite difference method for a conservative Allen–Cahn equation on non-flat surfaces. Journal of Computational Physics, 2017, 334, 170-181.	1.9	27
54	An unconditionally stable hybrid method for image segmentation. Applied Numerical Mathematics, 2014, 82, 32-43.	1.2	26

#	Article	IF	CITATIONS
55	A variant of stabilized-scalar auxiliary variable (S-SAV) approach for a modified phase-field surfactant model. Computer Physics Communications, 2021, 261, 107825.	3.0	26
56	A robust and efficient fingerprint image restoration method based on a phase-field model. Pattern Recognition, 2022, 123, 108405.	5.1	26
57	A comparison study of ADI and operator splitting methods on option pricing models. Journal of Computational and Applied Mathematics, 2013, 247, 162-171.	1.1	25
58	Motion by mean curvature of curves on surfaces using the Allen–Cahn equation. International Journal of Engineering Science, 2015, 97, 126-132.	2.7	25
59	Multifractal detrended cross-correlation analysis between respiratory diseases and haze in South Korea. Chaos, Solitons and Fractals, 2020, 135, 109781.	2.5	25
60	An Unconditionally Gradient Stable Adaptive Mesh Refinement for the Cahn-Hilliard Equation. Journal of the Korean Physical Society, 2008, 53, 672-679.	0.3	25
61	Three-dimensional volume-conserving immersed boundary model for two-phase fluid flows. Computer Methods in Applied Mechanics and Engineering, 2013, 257, 36-46.	3.4	24
62	Combining MF-DFA and LSSVM for retina images classification. Biomedical Signal Processing and Control, 2020, 60, 101943.	3.5	24
63	An efficient and accurate numerical algorithm for the vector-valued Allen–Cahn equations. Computer Physics Communications, 2012, 183, 2107-2115.	3.0	23
64	An unconditionally stable numerical method for bimodal image segmentation. Applied Mathematics and Computation, 2012, 219, 3083-3090.	1.4	23
65	Microphase separation patterns in diblock copolymers on curved surfaces using a nonlocal Cahn-Hilliard equation. European Physical Journal E, 2015, 38, 117.	0.7	23
66	A new conservative vector-valued Allen–Cahn equation and its fast numerical method. Computer Physics Communications, 2017, 221, 102-108.	3.0	23
67	Predicting Stock Price Trend Using MACD Optimized by Historical Volatility. Mathematical Problems in Engineering, 2018, 2018, 1-12.	0.6	23
68	Level Set, Phase-Field, and Immersed Boundary Methods for Two-Phase Fluid Flows. Journal of Fluids Engineering, Transactions of the ASME, 2014, 136, .	0.8	22
69	Comparison study of numerical methods for solving the Allen–Cahn equation. Computational Materials Science, 2016, 111, 131-136.	1.4	22
70	Numerical analysis of energy-minimizing wavelengths of equilibrium states for diblock copolymers. Current Applied Physics, 2014, 14, 1263-1272.	1,1	21
71	Volume preserving immersed boundary methods for twoâ€phase fluid flows. International Journal for Numerical Methods in Fluids, 2012, 69, 842-858.	0.9	20
72	Mean curvature flow by the Allen–Cahn equation. European Journal of Applied Mathematics, 2015, 26, 535-559.	1.4	20

#	Article	IF	CITATIONS
73	Fast and efficient narrow volume reconstruction from scattered data. Pattern Recognition, 2015, 48, 4057-4069.	5.1	20
74	A phase-field model and its efficient numerical method for two-phase flows on arbitrarily curved surfaces in 3D space. Computer Methods in Applied Mechanics and Engineering, 2020, 372, 113382.	3.4	20
75	The susceptible-unidentified infected-confirmed (SUC) epidemic model for estimating unidentified infected population for COVID-19. Chaos, Solitons and Fractals, 2020, 139, 110090.	2.5	20
76	Fourier-Spectral Method for the Phase-Field Equations. Mathematics, 2020, 8, 1385.	1.1	20
77	Linear and fully decoupled scheme for a hydrodynamics coupled phase-field surfactant system based on a multiple auxiliary variables approach. Journal of Computational Physics, 2022, 452, 110909.	1.9	20
78	A numerical method for the ternary Cahn–Hilliard system with a degenerate mobility. Applied Numerical Mathematics, 2009, 59, 1029-1042.	1.2	19
79	Surface embedding narrow volume reconstruction from unorganized points. Computer Vision and Image Understanding, 2014, 121, 100-107.	3.0	19
80	A practical and efficient numerical method for the Cahn–Hilliard equation in complex domains. Communications in Nonlinear Science and Numerical Simulation, 2019, 73, 217-228.	1.7	19
81	A parallel multigrid method of the Cahn–Hilliard equation. Computational Materials Science, 2013, 71, 89-96.	1.4	18
82	Numerical simulation of the zebra pattern formation on a three-dimensional model. Physica A: Statistical Mechanics and Its Applications, 2017, 475, 106-116.	1.2	18
83	Direct Discretization Method for the Cahn–Hilliard Equation on an Evolving Surface. Journal of Scientific Computing, 2018, 77, 1147-1163.	1.1	18
84	Numerical study of the ternary Cahn–Hilliard fluids by using an efficient modified scalar auxiliary variable approach. Communications in Nonlinear Science and Numerical Simulation, 2021, 102, 105923.	1.7	18
85	Mathematical model and its fast numerical method for the tumor growth. Mathematical Biosciences and Engineering, 2015, 12, 1173-1187.	1.0	18
86	AN ACCURATE AND EFFICIENT NUMERICAL METHOD FOR BLACK-SCHOLES EQUATIONS. Communications of the Korean Mathematical Society, 2009, 24, 617-628.	0.2	18
87	Phase-field simulations of crystal growth in a two-dimensional cavity flow. Computer Physics Communications, 2017, 216, 84-94.	3.0	17
88	AUTOMATED CLASSIFICATION FOR BRAIN MRIS BASED ON 2D MF-DFA METHOD. Fractals, 2020, 28, 2050109.	1.8	17
89	Buoyancy-driven mixing of multi-component fluids in two-dimensional tilted channels. European Journal of Mechanics, B/Fluids, 2013, 42, 37-46.	1.2	16
90	A hybrid FEM for solving the Allen–Cahn equation. Applied Mathematics and Computation, 2014, 244, 606-612.	1.4	16

#	Article	IF	CITATIONS
91	A practical finite difference method for the three-dimensional Black–Scholes equation. European Journal of Operational Research, 2016, 252, 183-190.	3.5	16
92	CROSS-CORRELATIONS BETWEEN BACTERIAL FOODBORNE DISEASES AND METEOROLOGICAL FACTORS BASED ON MF-DCCA: A CASE IN SOUTH KOREA. Fractals, 2020, 28, 2050046.	1.8	16
93	An improved scalar auxiliary variable (SAV) approach for the phase-field surfactant model. Applied Mathematical Modelling, 2021, 90, 11-29.	2.2	16
94	Numerical simulations of phase separation dynamics in a water–oil–surfactant system. Journal of Colloid and Interface Science, 2006, 303, 272-279.	5.0	15
95	Adaptive mesh refinement for simulation of thin film flows. Meccanica, 2014, 49, 239-252.	1.2	15
96	An immersed boundary method for simulating a single axisymmetric cell growth and division. Journal of Mathematical Biology, 2012, 65, 653-675.	0.8	14
97	Multicomponent volume reconstruction from slice data using a modified multicomponent Cahn–Hilliard system. Pattern Recognition, 2019, 93, 124-133.	5.1	14
98	Comparison study on the different dynamics between the Allen–Cahn and the Cahn–Hilliard equations. Computers and Mathematics With Applications, 2019, 77, 311-322.	1.4	14
99	Pattern formation in reaction–diffusion systems on evolving surfaces. Computers and Mathematics With Applications, 2020, 80, 2019-2028.	1.4	14
100	Modeling and simulation of the hexagonal pattern formation of honeycombs by the immersed boundary method. Communications in Nonlinear Science and Numerical Simulation, 2018, 62, 61-77.	1.7	13
101	A benchmark problem for the two- and three-dimensional Cahn–Hilliard equations. Communications in Nonlinear Science and Numerical Simulation, 2018, 61, 149-159.	1.7	13
102	Finite Difference Method for the Black–Scholes Equation Without Boundary Conditions. Computational Economics, 2018, 51, 961-972.	1.5	13
103	Efficient 3D Volume Reconstruction from a Point Cloud Using a Phase-Field Method. Mathematical Problems in Engineering, 2018, 2018, 1-9.	0.6	13
104	An unconditionally stable scheme for the Allen–Cahn equation with high-order polynomial free energy. Communications in Nonlinear Science and Numerical Simulation, 2021, 95, 105658.	1.7	13
105	A fast and practical adaptive finite difference method for the conservative Allen–Cahn model in two-phase flow system. International Journal of Multiphase Flow, 2021, 137, 103561.	1.6	13
106	An efficient stabilized multiple auxiliary variables method for the Cahn–Hilliard–Darcy two-phase flow system. Computers and Fluids, 2021, 223, 104948.	1.3	13
107	A Conservative Numerical Method for the Cahn–Hilliard Equation with Generalized Mobilities on Curved Surfaces in Three-Dimensional Space. Communications in Computational Physics, 2020, 27, 412-430.	0.7	13
108	Unconditionally energy stable schemes for fluid-based topology optimization. Communications in Nonlinear Science and Numerical Simulation, 2022, 111, 106433.	1.7	13

#	Article	IF	CITATIONS
109	Surface reconstruction from unorganized points with 10 gradient minimization. Computer Vision and Image Understanding, 2018, 169, 108-118.	3.0	12
110	Reconstruction of the Time-Dependent Volatility Function Using the Black–Scholes Model. Discrete Dynamics in Nature and Society, 2018, 2018, 1-9.	0.5	12
111	A Hybrid Monte Carlo and Finite Difference Method for Option Pricing. Computational Economics, 2019, 53, 111-124.	1.5	12
112	Fast and Accurate Smoothing Method Using A Modified Allen–Cahn Equation. CAD Computer Aided Design, 2020, 120, 102804.	1.4	12
113	Shape transformation using the modified Allen–Cahn equation. Applied Mathematics Letters, 2020, 107, 106487.	1.5	12
114	ECG CLASSIFICATION COMPARISON BETWEEN MF-DFA AND MF-DXA. Fractals, 2021, 29, 2150029.	1.8	12
115	Mathematical model and numerical simulation of the cell growth in scaffolds. Biomechanics and Modeling in Mechanobiology, 2012, 11, 677-688.	1.4	11
116	Effect of confinement on droplet deformation in shear flow. International Journal of Computational Fluid Dynamics, 2013, 27, 317-331.	0.5	11
117	Energy-minimizing wavelengths of equilibrium states for diblock copolymers in the hex-cylinder phase. Current Applied Physics, 2015, 15, 799-804.	1.1	11
118	Phase-field simulation of Rayleigh instability on a fibre. International Journal of Multiphase Flow, 2018, 105, 84-90.	1.6	11
119	Fast and accurate adaptive finite difference method for dendritic growth. Computer Physics Communications, 2019, 236, 95-103.	3.0	11
120	A conservative Allen–Cahn equation with a curvature-dependent Lagrange multiplier. Applied Mathematics Letters, 2022, 126, 107838.	1.5	11
121	AN AUGMENTED PROJECTION METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN ARBITRARY DOMAINS. International Journal of Computational Methods, 2005, 02, 201-212.	0.8	10
122	A simple and efficient outflow boundary condition for the incompressible Navier–Stokes equations. Engineering Applications of Computational Fluid Mechanics, 2017, 11, 69-85.	1.5	10
123	Mathematical Model and Numerical Simulation for Tissue Growth on Bioscaffolds. Applied Sciences (Switzerland), 2019, 9, 4058.	1.3	10
124	Linear, Second-Order Accurate, and Energy Stable Scheme for a Ternary Cahn–Hilliard Model by Using Lagrange Multiplier Approach. Acta Applicandae Mathematicae, 2021, 172, 1.	0.5	10
125	Energy dissipation–preserving time-dependent auxiliary variable method for the phase-field crystal and the Swift–Hohenberg models. Numerical Algorithms, 2022, 89, 1865-1894.	1.1	10
126	The stabilized-trigonometric scalar auxiliary variable approach for gradient flows and its efficient schemes. Journal of Engineering Mathematics, 2021, 129, 1.	0.6	10

#	Article	IF	CITATIONS
127	COMPARISON OF DIFFERENT NUMERICAL SCHEMES FOR THE CAHN-HILLIARD EQUATION. Journal of the Korean Society for Industrial and Applied Mathematics, 2013, 17, 197-207.	0.0	10
128	A Phase-Field Model for the Pinchoff of Liquid-Liquid Jets. Journal of the Korean Physical Society, 2009, 55, 1451-1460.	0.3	10
129	A conservative and stable explicit finite difference scheme for the diffusion equation. Journal of Computational Science, 2021, 56, 101491.	1.5	10
130	Modeling and simulation of multi-component immiscible flows based on a modified Cahn–Hilliard equation. European Journal of Mechanics, B/Fluids, 2022, 95, 194-204.	1.2	10
131	Totally decoupled implicit–explicit linear scheme with corrected energy dissipation law for the phase-field fluid vesicle model. Computer Methods in Applied Mechanics and Engineering, 2022, 399, 115330.	3.4	10
132	A practical numerical scheme for the ternary Cahn–Hilliard system with a logarithmic free energy. Physica A: Statistical Mechanics and Its Applications, 2016, 442, 510-522.	1.2	9
133	A phase-field method for two-phase fluid flow in arbitrary domains. Computers and Mathematics With Applications, 2020, 79, 1857-1874.	1.4	9
134	A novel Cahn–Hilliard–Navier–Stokes model with a nonstandard variable mobility for two-phase incompressible fluid flow. Computers and Fluids, 2020, 213, 104755.	1.3	9
135	Controlling COVID-19 Outbreaks with Financial Incentives. International Journal of Environmental Research and Public Health, 2021, 18, 724.	1.2	9
136	A stable second-order BDF scheme for the three-dimensional Cahn–Hilliard–Hele–Shaw system. Advances in Computational Mathematics, 2021, 47, 1.	0.8	9
137	Nonlinear Multigrid Implementation for the Two-Dimensional Cahn–Hilliard Equation. Mathematics, 2020, 8, 97.	1.1	9
138	Effective Time Step Analysis of a Nonlinear Convex Splitting Scheme for the Cahn–Hilliard Equation. Communications in Computational Physics, 2019, 25, .	0.7	9
139	An explicit conservative Saul'yev scheme for the Cahn–Hilliard equation. International Journal of Mechanical Sciences, 2022, 217, 106985.	3.6	9
140	Energy-stable method for the Cahn–Hilliard equation in arbitrary domains. International Journal of Mechanical Sciences, 2022, 228, 107489.	3.6	9
141	An efficient numerical method for evolving microstructures with strong elastic inhomogeneity. Modelling and Simulation in Materials Science and Engineering, 2015, 23, 045007.	0.8	8
142	Three-dimensional simulations of the cell growth and cytokinesis using the immersed boundary method. Mathematical Biosciences, 2016, 271, 118-127.	0.9	8
143	A multigrid solution for the Cahn–Hilliard equation on nonuniform grids. Applied Mathematics and Computation, 2017, 293, 320-333.	1.4	8
144	A practical finite difference scheme for the Navier–Stokes equation on curved surfaces in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"> <mml:msup> <mml:mrow> <mml:mi mathyariant="double-struck">R </mml:mi </mml:mrow> <mml:mrow> <mml:mrow> </mml:mrow> <td>mml·1.9</td><td></td></mml:mrow></mml:msup></mml:math 	mml·1.9	

mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:mibilimath>. Journal of Computational Physics, 2020, 411, 109403.

#	Article	IF	CITATIONS
145	Modeling and simulation of droplet evaporation using a modified Cahn–Hilliard equation. Applied Mathematics and Computation, 2021, 390, 125591.	1.4	8
146	High-order time-accurate, efficient, and structure-preserving numerical methods for the conservative Swift–Hohenberg model. Computers and Mathematics With Applications, 2021, 102, 160-174.	1.4	8
147	Phase-field model and its splitting numerical scheme for tissue growth. Applied Numerical Mathematics, 2017, 117, 22-35.	1.2	7
148	Curve and Surface Smoothing Using a Modified Cahn-Hilliard Equation. Mathematical Problems in Engineering, 2017, 2017, 1-9.	0.6	7
149	The Cahn–Hilliard Equation with Generalized Mobilities in Complex Geometries. Mathematical Problems in Engineering, 2019, 2019, 1-10.	0.6	7
150	Numerical Simulation of Dendritic Pattern Formation in an Isotropic Crystal Growth Model on Curved Surfaces. Symmetry, 2020, 12, 1155.	1.1	7
151	An unconditionally energy-stable second-order time-accurate numerical scheme for the coupled Cahn–Hilliard system in copolymer/homopolymer mixtures. Computational Materials Science, 2021, 200, 110809.	1.4	7
152	A Crank–Nicolson scheme for the Landau–Lifshitz equation without damping. Journal of Computational and Applied Mathematics, 2010, 234, 613-623.	1.1	6
153	Accuracy, Robustness, and Efficiency of the Linear Boundary Condition for the Black-Scholes Equations. Discrete Dynamics in Nature and Society, 2015, 2015, 1-10.	0.5	6
154	Comparison of optimization algorithms for modeling of Haldane-type growth kinetics during phenol and benzene degradation. Biochemical Engineering Journal, 2016, 106, 118-124.	1.8	6
155	The daily computed weighted averaging basic reproduction numberR0,k,ωnfor MERS-CoV in South Korea. Physica A: Statistical Mechanics and Its Applications, 2016, 451, 190-197.	1.2	6
156	Phase-field modeling and computer simulation of the coffee-ring effect. Theoretical and Computational Fluid Dynamics, 2020, 34, 679-692.	0.9	6
157	The Navier–Stokes–Cahn–Hilliard model with a high-order polynomial free energy. Acta Mechanica, 2020, 231, 2425-2437.	1.1	6
158	Finite Difference Method for the Multi-Asset Black–Scholes Equations. Mathematics, 2020, 8, 391.	1.1	6
159	Side wall boundary effect on the Rayleigh–Taylor instability. European Journal of Mechanics, B/Fluids, 2021, 85, 361-374.	1.2	6
160	Co-movements between Shanghai Composite Index and some fund sectors in China. Physica A: Statistical Mechanics and Its Applications, 2021, 573, 125981.	1.2	6
161	A practical adaptive grid method for the Allen–Cahn equation. Physica A: Statistical Mechanics and Its Applications, 2021, 573, 125975.	1.2	6
162	Robust and accurate construction of the local volatility surface using the Black–Scholes equation. Chaos, Solitons and Fractals, 2021, 150, 111116.	2.5	6

#	Article	IF	CITATIONS
163	Unconditionally energy stable second-order numerical scheme for the Allen–Cahn equation with a high-order polynomial free energy. Advances in Difference Equations, 2021, 2021, .	3.5	6
164	Numerical study of incompressible binary fluids on 3D curved surfaces based on the conservative Allen–Cahn–Navier–Stokes model. Computers and Fluids, 2021, 228, 105094.	1.3	6
165	ROBUST AND ACCURATE METHOD FOR THE BLACK-SCHOLES EQUATIONS WITH PAYOFF-CONSISTENT EXTRAPOLATION. Communications of the Korean Mathematical Society, 2015, 30, 297-311.	0.2	6
166	Efficient and structure-preserving time-dependent auxiliary variable method for a conservative Allen–Cahn type surfactant system. Engineering With Computers, 2022, 38, 5231-5250.	3.5	6
167	Numerical studies of the fingering phenomena for the thin film equation. International Journal for Numerical Methods in Fluids, 2011, 67, 1358-1372.	0.9	5
168	A Phase-Field Model for Articular Cartilage Regeneration in Degradable Scaffolds. Bulletin of Mathematical Biology, 2013, 75, 2389-2409.	0.9	5
169	An Immersed Boundary Method for a Contractile Elastic Ring in a Three-Dimensional Newtonian Fluid. Journal of Scientific Computing, 2016, 67, 909-925.	1.1	5
170	A conservative finite difference scheme for the N-component Cahn–Hilliard system on curved surfaces in 3D. Journal of Engineering Mathematics, 2019, 119, 149-166.	0.6	5
171	Pinning boundary conditions for phase-field models. Communications in Nonlinear Science and Numerical Simulation, 2020, 82, 105060.	1.7	5
172	Porous Three-Dimensional Scaffold Generation for 3D Printing. Mathematics, 2020, 8, 946.	1.1	5
173	The Effect of "Wuhan Closure―on the COVID-19 Pandemic in China. Fluctuation and Noise Letters, 2021, 20, .	1.0	5
174	Reconstruction of the local volatility function using the Black–Scholes model. Journal of Computational Science, 2021, 51, 101341.	1.5	5
175	AN UNCONDITIONALLY GRADIENT STABLE NUMERICAL METHOD FOR THE OHTA-KAWASAKI MODEL. Bulletin of the Korean Mathematical Society, 2017, 54, 145-158.	0.3	5
176	Unconditionally stable second-order accurate scheme for a parabolic sine-Gordon equation. AIP Advances, 2022, 12, 025203.	0.6	5
177	Three-dimensional volume reconstruction from multi-slice data using a shape transformation. Computers and Mathematics With Applications, 2022, 113, 52-58.	1.4	5
178	AN EFFICIENT AND ACCURATE NUMERICAL SCHEME FOR TURING INSTABILITY ON A PREDATOR–PREY MODEL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250139.	0.7	4
179	An accurate and robust numerical method for micromagnetics simulations. Current Applied Physics, 2014, 14, 476-483.	1.1	4
180	Practical estimation of a splitting parameter for a spectral method for the ternary Cahn–Hilliard system with a logarithmic free energy. Mathematical Methods in the Applied Sciences, 2017, 40, 1734-1745.	1.2	4

#	Article	IF	CITATIONS
181	Conservative Allen–Cahn equation with a nonstandard variable mobility. Acta Mechanica, 2020, 231, 561-576.	1.1	4
182	An Accurate and Practical Explicit Hybrid Method for the Chan–Vese Image Segmentation Model. Mathematics, 2020, 8, 1173.	1.1	4
183	Effect of oxytocin injection on fetal heart rate based on multifractal analysis. Chaos, Solitons and Fractals, 2021, 148, 111045.	2.5	4
184	Numerical simulations of the dynamics of axisymmetric compound liquid threads with a phase-field model. European Journal of Mechanics, B/Fluids, 2021, 89, 203-216.	1.2	4
185	AN ADAPTIVE FINITE DIFFERENCE METHOD USING FAR-FIELD BOUNDARY CONDITIONS FOR THE BLACK-SCHOLES EQUATION. Bulletin of the Korean Mathematical Society, 2014, 51, 1087-1100.	0.3	4
186	Benchmark Problems for the Numerical Schemes of the Phase-Field Equations. Discrete Dynamics in Nature and Society, 2022, 2022, 1-10.	0.5	4
187	Classification of ternary data using the ternary Allen–Cahn system for small datasets. AIP Advances, 2022, 12, .	0.6	4
188	A simple and robust boundary treatment for the forced Korteweg–de Vries equation. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 2262-2271.	1.7	3
189	A hybrid numerical method for the phaseâ€field model of fluid vesicles in threeâ€dimensional space. International Journal for Numerical Methods in Fluids, 2015, 78, 63-75.	0.9	3
190	Accurate and Efficient Computations of the Greeks for Options Near Expiry Using the Black-Scholes Equations. Discrete Dynamics in Nature and Society, 2016, 2016, 1-12.	0.5	3
191	Verification of Convergence Rates of Numerical Solutions for Parabolic Equations. Mathematical Problems in Engineering, 2019, 2019, 1-10.	0.6	3
192	Mathematical modeling and computer simulation of the three-dimensional pattern formation of honeycombs. Scientific Reports, 2019, 9, 20364.	1.6	3
193	Fast Monte Carlo Simulation for Pricing Equity-Linked Securities. Computational Economics, 2020, 56, 865-882.	1.5	3
194	Automatic Binary Data Classification Using a Modified Allen–Cahn Equation. International Journal of Pattern Recognition and Artificial Intelligence, 2021, 35, 2150013.	0.7	3
195	Optimal non-uniform finite difference grids for the Black–Scholes equations. Mathematics and Computers in Simulation, 2021, 182, 690-704.	2.4	3
196	An unconditionally stable numerical method for the viscous CahnHilliard equation. Discrete and Continuous Dynamical Systems - Series B, 2014, 19, 1737-1747.	0.5	3
197	A HYBRID METHOD FOR HIGHER-ORDER NONLINEAR DIFFUSION EQUATIONS. Communications of the Korean Mathematical Society, 2005, 20, 179-193.	0.2	3
198	An unconditionally stable splitting method for the Allen–Cahn equation with logarithmic free energy. Journal of Engineering Mathematics, 2022, 132, 1.	0.6	3

#	Article	IF	CITATIONS
199	A simple and explicit numerical method for the phase-field model for diblock copolymer melts. Computational Materials Science, 2022, 205, 111192.	1.4	3
200	Original variables based energy-stable time-dependent auxiliary variable method for the incompressible Navier–Stokes equation. Computers and Fluids, 2022, 240, 105432.	1.3	3
201	Numerical simulation and analysis of the Swift–Hohenberg equation by the stabilized Lagrange multiplier approach. Computational and Applied Mathematics, 2022, 41, 1.	1.0	3
202	Motion by Mean Curvature with Constraints Using a Modified Allen–Cahn Equation. Journal of Scientific Computing, 2022, 92, .	1.1	3
203	Numerical Study of Periodic Traveling Wave Solutions for the Predator–Prey Model with Landscape Features. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550117.	0.7	2
204	Applying Least Squares Support Vector Machines to Mean-Variance Portfolio Analysis. Mathematical Problems in Engineering, 2019, 2019, 1-10.	0.6	2
205	An Explicit Hybrid Method for the Nonlocal Allen–Cahn Equation. Symmetry, 2020, 12, 1218.	1.1	2
206	Periodic travelling wave solutions for a reaction-diffusion system on landscape fitted domains. Chaos, Solitons and Fractals, 2020, 139, 110300.	2.5	2
207	A Simple Method for Network Visualization. Mathematics, 2020, 8, 1020.	1.1	2
208	Investigation of the Implications of "Haze Special Law―on Air Quality in South Korea. Complexity, 2020, 2020, 1-18.	0.9	2
209	A Simple Benchmark Problem for the Numerical Methods of the Cahn–Hilliard Equation. Discrete Dynamics in Nature and Society, 2021, 2021, 1-8.	0.5	2
210	Linear and energy stable schemes for the Swift–Hohenberg equation with quadratic-cubic nonlinearity based on a modified scalar auxiliary variable approach. Journal of Engineering Mathematics, 2021, 128, 1.	0.6	2
211	AN ADAPTIVE MULTIGRID TECHNIQUE FOR OPTION PRICING UNDER THE BLACK-SCHOLES MODEL. Journal of the Korean Society for Industrial and Applied Mathematics, 2013, 17, 295-306.	0.0	2
212	An Unconditionally Stable Positivity-Preserving Scheme for the One-Dimensional Fisher–Kolmogorov–Petrovsky–Piskunov Equation. Discrete Dynamics in Nature and Society, 2021, 2021, 1-11.	0.5	2
213	Fast and Efficient Numerical Finite Difference Method for Multiphase Image Segmentation. Mathematical Problems in Engineering, 2021, 2021, 1-23.	0.6	2
214	Effective time step analysis for the Allen–Cahn equation with a highâ€order polynomial free energy. International Journal for Numerical Methods in Engineering, 0, , .	1.5	2
215	A numerical characteristic method for probability generating functions on stochastic first-order reaction networks. Journal of Mathematical Chemistry, 2013, 51, 316-337.	0.7	1
216	Numerical investigations on self-similar solutions of the nonlinear diffusion equation. European Journal of Mechanics, B/Fluids, 2013, 42, 30-36.	1.2	1

#	Article	IF	CITATIONS
217	A regime-switching model with the volatility smile for two-asset European options. Automatica, 2014, 50, 747-755.	3.0	1
218	Equity-linked security pricing and Greeks at arbitrary intermediate times using Brownian bridge. Monte Carlo Methods and Applications, 2019, 25, 291-305.	0.3	1
219	Super-Fast Computation for the Three-Asset Equity-Linked Securities Using the Finite Difference Method. Mathematics, 2020, 8, 307.	1.1	1
220	A Simple Visualization Method for Three-Dimensional (3D) Network. Discrete Dynamics in Nature and Society, 2021, 2021, 1-10.	0.5	1
221	Calibration of the temporally varying volatility and interest rate functions. International Journal of Computer Mathematics, 0, , 1-14.	1.0	1
222	Reduction in vacuum phenomenon for the triple junction in the ternary Cahn–Hilliard model. Acta Mechanica, 2021, 232, 4485.	1.1	1
223	A COMPARISON STUDY OF EXPLICIT AND IMPLICIT NUMERICAL METHODS FOR THE EQUITY-LINKED SECURITIES. Honam Mathematical Journal, 2015, 37, 441-455.	0.1	1
224	Long-Time Analysis of a Time-Dependent SUC Epidemic Model for the COVID-19 Pandemic. Journal of Healthcare Engineering, 2021, 2021, 1-10.	1.1	1
225	Robust optimal parameter estimation for the susceptible-unidentified infected-confirmed model. Chaos, Solitons and Fractals, 2021, 153, 111556.	2.5	1
226	ECG classification using multifractal detrended moving average cross-correlation analysis. International Journal of Modern Physics B, 0, , .	1.0	1
227	Numerical simulation of the coffee-ring effect inside containers with time-dependent evaporation rate. Theoretical and Computational Fluid Dynamics, 2022, 36, 423-433.	0.9	1
228	Accurate and Efficient Finite Difference Method for the Black–Scholes Model with No Far-Field Boundary Conditions. Computational Economics, 2023, 61, 1207-1224.	1.5	1
229	Classification of melanoma images using 2D multifractal detrended cross-correlation analysis. Modern Physics Letters B, 2022, 36, .	1.0	1
230	Nonuniform Finite Difference Scheme for the Three-Dimensional Time-Fractional Black–Scholes Equation. Journal of Function Spaces, 2021, 2021, 1-11.	0.4	1
231	An Adaptive Time-Stepping Algorithm for the Allen–Cahn Equation. Journal of Function Spaces, 2022, 2022, 1-12.	0.4	1
232	A Projection Method for the Conservative Discretizations of Parabolic Partial Differential Equations. Journal of Scientific Computing, 2018, 75, 332-349.	1.1	0
233	A novel modified Modica–Mortola equation with a phase-dependent interfacial function. International Journal of Modern Physics B, 0, , .	1.0	0
234	Benchmark Problems for the Numerical Discretization of the Cahn–Hilliard Equation with a Source Term. Discrete Dynamics in Nature and Society, 2021, 2021, 1-11.	0.5	0

#	Article	IF	CITATIONS
235	Finite volume scheme for the lattice Boltzmann method on curved surfaces in 3D. Engineering With Computers, 0, , .	3.5	0
236	Linear Stability Analysis of the Cahn–Hilliard Equation in Spinodal Region. Journal of Function Spaces, 2022, 2022, 1-11.	0.4	0
237	Modification of multifractal analysis based on multiplicative cascade image. Physica A: Statistical Mechanics and Its Applications, 2022, 603, 127824.	1.2	0