Bin Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2626446/publications.pdf Version: 2024-02-01

<u>ΒιΝ ΖΗΛΟ</u>

#	Article	IF	CITATIONS
1	Crustal deformation on the Chinese mainland during 1998–2014 based on GPS data. Geodesy and Geodynamics, 2015, 6, 7-15.	2.2	133
2	Dominant Controls of Downdip Afterslip and Viscous Relaxation on the Postseismic Displacements Following the <i>M</i> _{<i>w</i>} 7.9 Gorkha, Nepal, Earthquake. Journal of Geophysical Research: Solid Earth, 2017, 122, 8376-8401.	3.4	83
3	Noise analysis of continuous GPS coordinate time series for CMONOC. Advances in Space Research, 2012, 49, 943-956.	2.6	53
4	Contemporary kinematics of the Ordos block, North China and its adjacent rift systems constrained by dense GPS observations. Journal of Asian Earth Sciences, 2017, 135, 257-267.	2.3	52
5	Spatiotemporal filtering for regional GPS network in China using independent component analysis. Journal of Geodesy, 2017, 91, 419-440.	3.6	45
6	Geodetic observations detecting coseismic displacements and gravity changes caused by the Mw = 9.0 Tohokuâ€Oki earthquake. Journal of Geophysical Research, 2012, 117, .	3.3	37
7	Present-day crustal movement of the Chinese mainland based on Global Navigation Satellite System data from 1998 to 2018. Advances in Space Research, 2019, 63, 840-856.	2.6	24
8	Far field deformation analysis after the Mw9.0 Tohoku earthquake constrained by cGPS data. Journal of Seismology, 2012, 16, 305-313.	1.3	19
9	Fault Geometry and Slip Distribution of the 2013 <i>Mw</i> 6.6 Lushan Earthquake in China Constrained by GPS, InSAR, Leveling, and Strong Motion Data. Journal of Geophysical Research: Solid Earth, 2019, 124, 7341-7353.	3.4	14
10	Coseismic Slip Model of the 2018 MwÂ7.9 Gulf of Alaska Earthquake and Its Seismic Hazard Implications. Seismological Research Letters, 2019, 90, 642-648.	1.9	14
11	Co-seismic displacements associated with the 2015 Nepal <italic>M</italic> _w 7.9 earthquake and <italic>M</italic> _w 7.3 aftershock constrained by Global Positioning System Measurements. Chinese Science Bulletin. 2015, 60, 2758-2764.	0.7	13
12	Aseismic slip and recent ruptures of persistent asperities along the Alaska-Aleutian subduction zone. Nature Communications, 2022, 13, .	12.8	10
13	Decomposition of geodetic time series: A combined simulated annealing algorithm and Kalman filter approach. Advances in Space Research, 2019, 64, 1130-1147.	2.6	6
14	Dynamic modeling of postseismic deformation following the 2015 Mw 7.8 Gorkha earthquake, Nepal. Journal of Asian Earth Sciences, 2021, 215, 104781.	2.3	5
15	Block Kinematics in North China From GPS Measurements. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	4
16	Normal Faulting Movement During the 2020 Mw 6.4 Yutian Earthquake: A Shallow Rupture in NW Tibet Revealed by Geodetic Measurements. Pure and Applied Geophysics, 2021, 178, 1563.	1.9	3
17	Determination of tectonic and nontectonic vertical motion rates of the North China Craton using dense CPS and CRACE data. Journal of Asian Earth Sciences, 2022, 236, 105314.	2.3	3
18	Oblique fault movement during the 2016 Mw 5.9 Zaduo earthquake: insights into regional tectonics of the Qiangtang block, Tibetan Plateau. Journal of Seismology, 2020, 24, 693-708.	1.3	2

#	Article	IF	CITATIONS
19	Interaction between historical earthquakes and the 2021 Mw7.4 Maduo event and their impacts on the seismic gap areas along the East Kunlun fault. Earth, Planets and Space, 2022, 74, .	2.5	2