Mateus Meneghetti Ferrer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2626182/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental and Theoretical Investigations of Electronic Structure and Photoluminescence Properties of β-Ag ₂ MoO ₄ Microcrystals. Inorganic Chemistry, 2014, 53, 5589-5599.	4.0	133
2	Toward an Understanding of the Growth of Ag Filaments on α-Ag ₂ WO ₄ and Their Photoluminescent Properties: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry C, 2014, 118, 1229-1239.	3.1	124
3	Synthesis of wurtzite ZnS nanoparticles using the microwave assisted solvothermal method. Journal of Alloys and Compounds, 2013, 556, 153-159.	5.5	105
4	Potentiated Electron Transference in α-Ag ₂ WO ₄ Microcrystals with Ag Nanofilaments as Microbial Agent. Journal of Physical Chemistry A, 2014, 118, 5769-5778.	2.5	99
5	Structural and electronic analysis of the atomic scale nucleation of Ag on α-Ag2WO4 induced by electron irradiation. Scientific Reports, 2014, 4, 5391.	3.3	99
6	Effects of surface stability on the morphological transformation of metals and metal oxides as investigated by first-principles calculations. Nanotechnology, 2015, 26, 405703.	2.6	84
7	The interplay between morphology and photocatalytic activity in ZnO and N-doped ZnO crystals. Materials and Design, 2017, 120, 363-375.	7.0	79
8	Quantum Mechanics Insight into the Microwave Nucleation of SrTiO ₃ Nanospheres. Journal of Physical Chemistry C, 2012, 116, 24792-24808.	3.1	62
9	A 3D platform for the morphology modulation of materials: first principles calculations on the thermodynamic stability and surface structure of metal oxides: Co ₃ O ₄ , <i>α</i> Fe ₂ O ₃ , and In ₂ O ₃ , and Engineering, 2016,	2.0	53
10	A Combined Experimental and Theoretical Study on the Formation of Ag Filaments on βâ€Ag ₂ MoO ₄ Induced by Electron Irradiation. Particle and Particle Systems Characterization, 2015, 32, 646-651.	2.3	47
11	A theoretical investigation of the structural and electronic properties of orthorhombic CaZrO3. Ceramics International, 2015, 41, 3069-3074.	4.8	45
12	Strutural and optical approach of CdS@ZnS core–shell system. Chemical Physics Letters, 2012, 536, 96-99.	2.6	37
13	α-Ag _{2–2<i>x</i>} Zn _{<i>x</i>} WO ₄ (0 ≤i>x ≤0.25) Solid Solutions: Structure, Morphology, and Optical Properties. Inorganic Chemistry, 2017, 56, 7360-7372.	4.0	36
14	Modeling the atomic-scale structure, stability, and morphological transformations in the tetragonal phase of LaVO4. Chemical Physics Letters, 2016, 660, 87-92.	2.6	34
15	Theoretical methods for calculations of optical phonons in BiOBr: Analysis and correction of propagated errors. Journal of Raman Spectroscopy, 2018, 49, 1356-1363.	2.5	31
16	Photocatalytic degradation of rhodamine B using Nb2O5 synthesized with different niobium precursors: Factorial design of experiments. Ceramics International, 2021, 47, 20570-20578.	4.8	31
17	Experimental and theoretical studies on the enhanced photoluminescence activity of zinc sulfide with a capping agent. Journal of Applied Physics, 2011, 110, 123507.	2.5	26
18	Experimental and Theoretical Investigations on the Structural, Electronic, and Vibrational Properties of Cs ₂ AgSbCl ₆ Double Perovskite. Industrial & Engineering Chemistry Research, 2021, 60, 18918-18928.	3.7	26

#	Article	IF	CITATIONS
19	Photocatalytic activity of semiconductor sulfide heterostructures. Dalton Transactions, 2013, 42, 11111.	3.3	25
20	Influence of solvent on the morphology and photocatalytic properties of ZnS decorated CeO2 nanoparticles. Journal of Applied Physics, 2014, 115, .	2.5	24
21	Effects of chemical substitution on the structural and optical properties of α-Ag _{2â^²2x} Ni _x WO ₄ (0 ≤ ≤0.08) solid solutions. Physical Chemistry Chemical Physics, 2016, 18, 21966-21975.	2.8	24
22	Quantitative evaluation of the surface stability and morphological changes of Cu2O particles. Heliyon, 2019, 5, e02500.	3.2	22
23	Band Gap Narrowing of Bi-Doped NaTaO ₃ for Photocatalytic Hydrogen Evolution under Simulated Sunlight: A Pseudocubic Phase Induced by Doping. ACS Applied Energy Materials, 2021, 4, 671-679.	5.1	21
24	Towards controlled synthesis and better understanding of blue shift of the CaS crystals. Journal of Materials Chemistry C, 2014, 2, 2743.	5.5	20
25	Computational Simulations of Morphological Transformations by Surface Structures: The Case of Rutile TiO2 phase. Materials Research, 2017, 20, 920-925.	1.3	20
26	Spin-phonon coupling in uniaxial anisotropic spin-glass based on Fe2TiO5 pseudobrookite. Journal of Alloys and Compounds, 2019, 799, 563-572.	5.5	20
27	Europium doped zinc sulfide: a correlation between experimental and theoretical calculations. Journal of Molecular Modeling, 2014, 20, 2375.	1.8	17
28	Computational procedure to an accurate DFT simulation to solid state systems. Computational Materials Science, 2019, 170, 109176.	3.0	17
29	The role of counter-ions in crystal morphology, surface structure and photocatalytic activity of ZnO crystals grown onto a substrate. Applied Surface Science, 2020, 529, 147057.	6.1	15
30	Effect of Er 3+ ions on the phase formation and properties of In 2 O 3 nanostructures crystallized upon microwave heating. Journal of Solid State Chemistry, 2017, 249, 58-63.	2.9	14
31	Facile microwave-assisted hydrothermal synthesis of hexagonal sodium tungsten bronze and its high response to NO2. Materials Letters, 2016, 185, 197-200.	2.6	13
32	First-principles calculations and Raman scattering evidence for local symmetry lowering in rhombohedral ilmenite: temperature- and pressure-dependent studies. Journal of Physics Condensed Matter, 2018, 30, 485401.	1.8	13
33	Laser/Electron Irradiation on Indium Phosphide (InP) Semiconductor: Promising Pathways to In Situ Formation of Indium Nanoparticles. Particle and Particle Systems Characterization, 2018, 35, 1800237.	2.3	12
34	Self-compacting mortar with sugarcane bagasse ash: development of a sustainable alternative for Brazilian civil construction. Environment, Development and Sustainability, 2019, 21, 2125-2143.	5.0	12
35	The effect of TiO2 nanotube morphological engineering and ZnS quantum dots on the water splitting reaction: A theoretical and experimental study. International Journal of Hydrogen Energy, 2018, 43, 6838-6850.	7.1	9
36	Morphological Transformation Network of Nanoparticles via DFT Simulations. Crystal Growth and Design, 2020, 20, 4600-4611.	3.0	9

#	Article	IF	CITATIONS
37	Unveiling the Structural Behavior under Pressure of Filled M _{0.5} Co ₄ Sb ₁₂ (M = K, Sr, La, Ce, and Yb) Thermoelectric Skutterudites. Inorganic Chemistry, 2021, 60, 7413-7421.	4.0	8
38	Doped Tin Dioxide (d-SnO2) and Its Nanostructures: Review of the Theoretical Aspects, Photocatalytic and Biomedical Applications. Solids, 2022, 3, 327-360.	2.4	8
39	An investigation of the photovoltaic parameters of ZnS grown on ZnO(101̄1). New Journal of Chemistry, 2020, 44, 20600-20609.	2.8	7
40	Characterization of different sugarcane bagasse ashes generated for preparation and application as green products in civil construction. Clean Technologies and Environmental Policy, 2019, 21, 1687-1698.	4.1	6
41	Unveiling the infrared complex dielectric function of ilmenite CdTiO3. Journal of Alloys and Compounds, 2020, 813, 152136.	5.5	6
42	Correlation between local structure and electronic properties of BaZrO3:TbYb Optical Ceramics. Journal of Electron Spectroscopy and Related Phenomena, 2021, 251, 147106.	1.7	5
43	Towards an Understanding on the Role of Precursor in the Synthesis of ZnS Nanostructures. Current Physical Chemistry, 2013, 3, 378-385.	0.2	3
44	Optical phonon modes in 1:2 ordered trigonal Ba 3 MgNb 2 O 9 perovskite: Synergy of both classical and quantum methods. Journal of Raman Spectroscopy, 2020, 51, 1219-1229.	2.5	2
45	Sugarcane Bagasse Ash Micronized Using Air Jet Mills for Green Pozzolan in Brazil. International Journal of Chemical Engineering, 2019, 2019, 1-10.	2.4	1
46	Experimental and Theoretical Studies of Photoluminescence in ZnS Obtained by Microwave-Assisted Solvothermal Method. Current Physical Chemistry, 2013, 3, 413-418.	0.2	1
47	Low recombination rates and band alignments as decisive condition to high Jsc and FF at ZnS complex system. Physical Chemistry Chemical Physics, 0, , .	2.8	1