List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2626082/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Materials and Mechanics for Stretchable Electronics. Science, 2010, 327, 1603-1607.	12.6	4,135
2	Epidermal Electronics. Science, 2011, 333, 838-843.	12.6	3,944
3	Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nature Materials, 2010, 9, 511-517.	27.5	1,501
4	A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008, 454, 748-753.	27.8	1,211
5	Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nature Communications, 2013, 4, 1543.	12.8	1,169
6	A Physically Transient Form of Silicon Electronics. Science, 2012, 337, 1640-1644.	12.6	1,085
7	Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics. Science, 2013, 340, 211-216.	12.6	1,010
8	Ultrathin conformal devices for precise and continuous thermal characterization of humanÂskin. Nature Materials, 2013, 12, 938-944.	27.5	1,002
9	Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin. Science, 2014, 344, 70-74.	12.6	982
10	Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nature Neuroscience, 2011, 14, 1599-1605.	14.8	981
11	A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Science Translational Medicine, 2016, 8, 366ra165.	12.4	933
12	Digital cameras with designs inspired by the arthropod eye. Nature, 2013, 497, 95-99.	27.8	926
13	Fractal design concepts for stretchable electronics. Nature Communications, 2014, 5, 3266.	12.8	821
14	Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nature Communications, 2014, 5, 4496.	12.8	757
15	Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays. Science, 2009, 325, 977-981.	12.6	748
16	Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 2015, 347, 154-159.	12.6	745
17	Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication. Advanced Materials, 2012, 24, 5284-5318.	21.0	727
18	Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1927-1932.	7.1	720

#	Article	IF	CITATIONS
19	Multifunctional Epidermal Electronics Printed Directly Onto the Skin. Advanced Materials, 2013, 25, 2773-2778.	21.0	714
20	Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nature Biotechnology, 2015, 33, 1280-1286.	17.5	658
21	Materials and Optimized Designs for Humanâ€Machine Interfaces Via Epidermal Electronics. Advanced Materials, 2013, 25, 6839-6846.	21.0	649
22	Finite deformation mechanics in buckled thin films on compliant supports. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15607-15612.	7.1	626
23	Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature, 2019, 575, 473-479.	27.8	610
24	Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine andÂrobotics. Nature Materials, 2010, 9, 929-937.	27.5	557
25	Stretchable, Curvilinear Electronics Based on Inorganic Materials. Advanced Materials, 2010, 22, 2108-2124.	21.0	525
26	Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science, 2019, 363, .	12.6	521
27	3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nature Communications, 2014, 5, 3329.	12.8	485
28	Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nature Reviews Materials, 2017, 2, .	48.7	463
29	A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11757-11764.	7.1	429
30	Wireless Optofluidic Systems for Programmable InÂVivo Pharmacology and Optogenetics. Cell, 2015, 162, 662-674.	28.9	417
31	Theoretical and Experimental Studies of Bending of Inorganic Electronic Materials on Plastic Substrates. Advanced Functional Materials, 2008, 18, 2673-2684.	14.9	398
32	Soft network composite materials with deterministic and bio-inspired designs. Nature Communications, 2015, 6, 6566.	12.8	392
33	Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extreme Mechanics Letters, 2016, 9, 269-281.	4.1	388
34	Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nature Materials, 2015, 14, 728-736.	27.5	387
35	Dissolvable Metals for Transient Electronics. Advanced Functional Materials, 2014, 24, 645-658.	14.9	379
36	Highâ€Performance Biodegradable/Transient Electronics on Biodegradable Polymers. Advanced Materials, 2014, 26, 3905-3911.	21.0	359

#	Article	IF	CITATIONS
37	A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature, 2019, 565, 361-365.	27.8	358
38	Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17095-17100.	7.1	356
39	Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Science Advances, 2016, 2, e1600418.	10.3	336
40	Self-assembled three dimensional network designs for soft electronics. Nature Communications, 2017, 8, 15894.	12.8	325
41	Flexible Near-Field Wireless Optoelectronics as Subdermal Implants for Broad Applications in Optogenetics. Neuron, 2017, 93, 509-521.e3.	8.1	323
42	Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nature Electronics, 2019, 2, 26-35.	26.0	322
43	Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3920-3925.	7.1	319
44	Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Science Advances, 2016, 2, e1601185.	10.3	310
45	Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nature Communications, 2014, 5, 4779.	12.8	309
46	Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nature Materials, 2018, 17, 268-276.	27.5	297
47	Stretchable GaAs Photovoltaics with Designs That Enable High Areal Coverage. Advanced Materials, 2011, 23, 986-991.	21.0	285
48	Biodegradable Elastomers and Silicon Nanomembranes/Nanoribbons for Stretchable, Transient Electronics, and Biosensors. Nano Letters, 2015, 15, 2801-2808.	9.1	281
49	Experimental and Theoretical Studies of Serpentine Microstructures Bonded To Prestrained Elastomers for Stretchable Electronics. Advanced Functional Materials, 2014, 24, 2028-2037.	14.9	273
50	Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nature Medicine, 2020, 26, 418-429.	30.7	272
51	Materials and Designs for Wireless Epidermal Sensors of Hydration and Strain. Advanced Functional Materials, 2014, 24, 3846-3854.	14.9	263
52	Origami MEMS and NEMS. MRS Bulletin, 2016, 41, 123-129.	3.5	253
53	Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nature Biomedical Engineering, 2019, 3, 194-205.	22.5	253
54	Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter, 2013, 9, 8062.	2.7	248

#	Article	IF	CITATIONS
55	Miniaturized Batteryâ€Free Wireless Systems for Wearable Pulse Oximetry. Advanced Functional Materials, 2017, 27, 1604373.	14.9	248
56	Battery-free, wireless sensors for full-body pressure and temperature mapping. Science Translational Medicine, 2018, 10, .	12.4	247
57	Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1788-1793.	7.1	242
58	An Epidermal Stimulation and Sensing Platform for Sensorimotor Prosthetic Control, Management of Lower Back Exertion, and Electrical Muscle Activation. Advanced Materials, 2016, 28, 4462-4471.	21.0	240
59	Curvilinear Electronics Formed Using Silicon Membrane Circuits and Elastomeric Transfer Elements. Small, 2009, 5, 2703-2709.	10.0	233
60	Controlled Mechanical Buckling for Origamiâ€Inspired Construction of 3D Microstructures in Advanced Materials. Advanced Functional Materials, 2016, 26, 2629-2639.	14.9	231
61	Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10072-10077.	7.1	228
62	Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nature Communications, 2014, 5, 4938.	12.8	227
63	Multifunctional Skinâ€Like Electronics for Quantitative, Clinical Monitoring of Cutaneous Wound Healing. Advanced Healthcare Materials, 2014, 3, 1597-1607.	7.6	226
64	Epidermal Electronics with Advanced Capabilities in Near-Field Communication. Small, 2015, 11, 906-912.	10.0	224
65	A skin-attachable, stretchable integrated system based on liquid GalnSn for wireless human motion monitoring with multi-site sensing capabilities. NPG Asia Materials, 2017, 9, e443-e443.	7.9	223
66	Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch. Nature Biomedical Engineering, 2020, 4, 148-158.	22.5	223
67	A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures. Journal of the Mechanics and Physics of Solids, 2016, 90, 179-202.	4.8	220
68	Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nature Biomedical Engineering, 2017, 1, .	22.5	210
69	Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19910-19915.	7.1	209
70	Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Science Advances, 2018, 4, eaau5849.	10.3	208
71	Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings. Science Advances, 2019, 5, eaau6356.	10.3	208
72	Dissolution Behaviors and Applications of Silicon Oxides and Nitrides in Transient Electronics. Advanced Functional Materials, 2014, 24, 4427-4434.	14.9	206

#	Article	IF	CITATIONS
73	Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Science Advances, 2016, 2, e1601014.	10.3	200
74	Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12998-13003.	7.1	197
75	Silicon nanomembranes for fingertip electronics. Nanotechnology, 2012, 23, 344004.	2.6	196
76	Assembly of Advanced Materials into 3D Functional Structures by Methods Inspired by Origami and Kirigami: A Review. Advanced Materials Interfaces, 2018, 5, 1800284.	3.7	195
77	Relation between blood pressure and pulse wave velocity for human arteries. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11144-11149.	7.1	193
78	Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow. Science Advances, 2015, 1, e1500701.	10.3	189
79	Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nature Communications, 2018, 9, 1417.	12.8	189
80	Stretchable Ferroelectric Nanoribbons with Wavy Configurations on Elastomeric Substrates. ACS Nano, 2011, 5, 3326-3332.	14.6	188
81	Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nature Biomedical Engineering, 2019, 3, 37-46.	22.5	185
82	Materials for stretchable electronics in bioinspired and biointegrated devices. MRS Bulletin, 2012, 37, 226-235.	3.5	184
83	Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Materialia, 2013, 61, 7816-7827.	7.9	183
84	Mechanicallyâ€Guided Structural Designs in Stretchable Inorganic Electronics. Advanced Materials, 2020, 32, e1902254.	21.0	183
85	Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11682-11687.	7.1	175
86	Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery. Nature Biomedical Engineering, 2020, 4, 997-1009.	22.5	175
87	Mechanics of stretchable batteries and supercapacitors. Current Opinion in Solid State and Materials Science, 2015, 19, 190-199.	11.5	173
88	Dissolution Chemistry and Biocompatibility of Single-Crystalline Silicon Nanomembranes and Associated Materials for Transient Electronics. ACS Nano, 2014, 8, 5843-5851.	14.6	171
89	Electronically Programmable, Reversible Shape Change in Two―and Threeâ€Dimensional Hydrogel Structures. Advanced Materials, 2013, 25, 1541-1546.	21.0	169
90	Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nature Biotechnology, 2021, 39, 1228-1238.	17.5	163

#	Article	IF	CITATIONS
91	Mechanics of Epidermal Electronics. Journal of Applied Mechanics, Transactions ASME, 2012, 79, .	2.2	161
92	25th Anniversary Article: Materials for Highâ€Performance Biodegradable Semiconductor Devices. Advanced Materials, 2014, 26, 1992-2000.	21.0	161
93	Flexible and Stretchable Antennas for Biointegrated Electronics. Advanced Materials, 2020, 32, e1902767.	21.0	158
94	Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring. Npj Digital Medicine, 2018, 1, 2.	10.9	157
95	Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. Nature Electronics, 2018, 1, 652-660.	26.0	157
96	Optimized Structural Designs for Stretchable Silicon Integrated Circuits. Small, 2009, 5, 2841-2847.	10.0	153
97	Miniaturized Flexible Electronic Systems with Wireless Power and Nearâ€Field Communication Capabilities. Advanced Functional Materials, 2015, 25, 4761-4767.	14.9	148
98	Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Science Advances, 2019, 5, eaaw1899.	10.3	146
99	Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nature Communications, 2019, 10, 5742.	12.8	146
100	Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Science Translational Medicine, 2020, 12, .	12.4	145
101	Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nature Communications, 2020, 11, 5990.	12.8	144
102	Materials and Fractal Designs for 3D Multifunctional Integumentary Membranes with Capabilities in Cardiac Electrotherapy. Advanced Materials, 2015, 27, 1731-1737.	21.0	141
103	Inâ€Plane Deformation Mechanics for Highly Stretchable Electronics. Advanced Materials, 2017, 29, 1604989.	21.0	141
104	Design and application of â€~J-shaped' stress–strain behavior in stretchable electronics: a review. Lab on A Chip, 2017, 17, 1689-1704.	6.0	140
105	Soft, thin skin-mounted power management systems and their use in wireless thermography. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6131-6136.	7.1	139
106	Active, Programmable Elastomeric Surfaces with Tunable Adhesion for Deterministic Assembly by Transfer Printing. Advanced Functional Materials, 2012, 22, 4476-4484.	14.9	135
107	Multimodal Sensing with a Three-Dimensional Piezoresistive Structure. ACS Nano, 2019, 13, 10972-10979.	14.6	134
108	Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9455-E9464.	7.1	129

#	Article	IF	CITATIONS
109	Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. Science Advances, 2021, 7, .	10.3	128
110	Shear-enhanced adhesiveless transfer printing for use in deterministic materials assembly. Applied Physics Letters, 2011, 98, .	3.3	127
111	Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Science Advances, 2019, 5, eaaw5296.	10.3	127
112	Three-dimensional electronic microfliers inspired by wind-dispersed seeds. Nature, 2021, 597, 503-510.	27.8	120
113	Postbuckling analysis and its application to stretchable electronics. Journal of the Mechanics and Physics of Solids, 2012, 60, 487-508.	4.8	119
114	Superâ€Absorbent Polymer Valves and Colorimetric Chemistries for Timeâ€5equenced Discrete Sampling and Chloride Analysis of Sweat via Skinâ€Mounted Soft Microfluidics. Small, 2018, 14, e1703334.	10.0	119
115	Soft, skin-mounted microfluidic systems for measuring secretory fluidic pressures generated at the surface of the skin by eccrine sweat glands. Lab on A Chip, 2017, 17, 2572-2580.	6.0	117
116	Soft Core/Shell Packages for Stretchable Electronics. Advanced Functional Materials, 2015, 25, 3698-3704.	14.9	116
117	A hierarchical computational model for stretchable interconnects with fractal-inspired designs. Journal of the Mechanics and Physics of Solids, 2014, 72, 115-130.	4.8	115
118	Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nature Materials, 2021, 20, 1559-1570.	27.5	114
119	Mechanics of precisely controlled thin film buckling on elastomeric substrate. Applied Physics Letters, 2007, 90, 133119.	3.3	113
120	Mechanics and thermal management of stretchable inorganic electronics. National Science Review, 2016, 3, 128-143.	9.5	112
121	Experimental and Theoretical Studies of Serpentine Interconnects on Ultrathin Elastomers for Stretchable Electronics. Advanced Functional Materials, 2017, 27, 1702589.	14.9	111
122	Finite width effect of thin-films buckling on compliant substrate: Experimental and theoretical studies. Journal of the Mechanics and Physics of Solids, 2008, 56, 2585-2598.	4.8	110
123	Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21427-21437.	7.1	110
124	An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time. Nature Electronics, 2021, 4, 302-312.	26.0	110
125	Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing. Nature Biomedical Engineering, 2018, 2, 165-172.	22.5	108
126	Freestanding 3D Mesostructures, Functional Devices, and Shapeâ€Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers. Advanced Materials, 2019, 31, e1805615.	21.0	105

#	Article	IF	CITATIONS
127	Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature. Advanced Healthcare Materials, 2016, 5, 119-127.	7.6	101
128	Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nature Neuroscience, 2021, 24, 1035-1045.	14.8	98
129	Stretchable Semiconductor Technologies with High Areal Coverages and Strainâ€Limiting Behavior: Demonstration in Highâ€Efficiency Dualâ€Junction GalnP/GaAs Photovoltaics. Small, 2012, 8, 1851-1856.	10.0	97
130	Micromechanics and Advanced Designs for Curved Photodetector Arrays in Hemispherical Electronicâ€Eye Cameras. Small, 2010, 6, 851-856.	10.0	94
131	Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. Pain, 2017, 158, 2108-2116.	4.2	93
132	Wireless sensors for continuous, multimodal measurements at the skin interface with lower limb prostheses. Science Translational Medicine, 2020, 12, .	12.4	93
133	Kinetically controlled, adhesiveless transfer printing using microstructured stamps. Applied Physics Letters, 2009, 94, .	3.3	92
134	Design of Strainâ€Limiting Substrate Materials for Stretchable and Flexible Electronics. Advanced Functional Materials, 2016, 26, 5345-5351.	14.9	92
135	Material innovation and mechanics design for substrates and encapsulation of flexible electronics: a review. Materials Horizons, 2021, 8, 383-400.	12.2	91
136	A high-density, high-channel count, multiplexed μECoG array for auditory-cortex recordings. Journal of Neurophysiology, 2014, 112, 1566-1583.	1.8	90
137	Flexible and Stretchable 3ï‰ Sensors for Thermal Characterization of Human Skin. Advanced Functional Materials, 2017, 27, 1701282.	14.9	90
138	Natural Wax for Transient Electronics. Advanced Functional Materials, 2018, 28, 1801819.	14.9	90
139	A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science, 2022, 376, 1006-1012.	12.6	90
140	Mechanically active materials in three-dimensional mesostructures. Science Advances, 2018, 4, eaat8313.	10.3	89
141	Optics and Nonlinear Buckling Mechanics in Large-Area, Highly Stretchable Arrays of Plasmonic Nanostructures. ACS Nano, 2015, 9, 5968-5975.	14.6	87
142	Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Science Advances, 2020, 6, eabb1093.	10.3	87
143	Bioresorbable, Wireless, Passive Sensors as Temporary Implants for Monitoring Regional Body Temperature. Advanced Healthcare Materials, 2020, 9, e2000942.	7.6	87
144	Elasticity of Fractal Inspired Interconnects. Small, 2015, 11, 367-373.	10.0	84

#	Article	IF	CITATIONS
145	A finite deformation model of planar serpentine interconnects for stretchable electronics. International Journal of Solids and Structures, 2016, 91, 46-54.	2.7	83
146	A Generic Soft Encapsulation Strategy for Stretchable Electronics. Advanced Functional Materials, 2019, 29, 1806630.	14.9	83
147	Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries. Nature Communications, 2021, 12, 5008.	12.8	83
148	A wireless haptic interface for programmable patterns of touch across large areas of the skin. Nature Electronics, 2022, 5, 374-385.	26.0	83
149	Soft Elastomers with Ionic Liquidâ€Filled Cavities as Strain Isolating Substrates for Wearable Electronics. Small, 2017, 13, 1602954.	10.0	82
150	Dissolution of Monocrystalline Silicon Nanomembranes and Their Use as Encapsulation Layers and Electrical Interfaces in Water-Soluble Electronics. ACS Nano, 2017, 11, 12562-12572.	14.6	82
151	2D Mechanical Metamaterials with Widely Tunable Unusual Modes of Thermal Expansion. Advanced Materials, 2019, 31, e1905405.	21.0	82
152	Buckling and twisting of advanced materials into morphable 3D mesostructures. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13239-13248.	7.1	81
153	Biological lipid membranes for on-demand, wireless drug delivery from thin, bioresorbable electronic implants. NPG Asia Materials, 2015, 7, e227-e227.	7.9	80
154	Electrochemical Properties of Siâ€Ge Heterostructures as an Anode Material for Lithium Ion Batteries. Advanced Functional Materials, 2014, 24, 1458-1464.	14.9	78
155	Mechanics of curvilinear electronics. Soft Matter, 2010, 6, 5757.	2.7	74
156	An Analytical Model of Reactive Diffusion for Transient Electronics. Advanced Functional Materials, 2013, 23, 3106-3114.	14.9	74
157	Resettable skin interfaced microfluidic sweat collection devices with chemesthetic hydration feedback. Nature Communications, 2019, 10, 5513.	12.8	74
158	Local versus global buckling of thin films on elastomeric substrates. Applied Physics Letters, 2008, 93,	3.3	73
159	Wireless, Batteryâ€Free Epidermal Electronics for Continuous, Quantitative, Multimodal Thermal Characterization of Skin. Small, 2018, 14, e1803192.	10.0	73
160	Epidermal radio frequency electronics for wireless power transfer. Microsystems and Nanoengineering, 2016, 2, 16052.	7.0	72
161	Guided Formation of 3D Helical Mesostructures by Mechanical Buckling: Analytical Modeling and Experimental Validation. Advanced Functional Materials, 2016, 26, 2909-2918.	14.9	70
162	Deterministic assembly of 3D mesostructures in advanced materials via compressive buckling: A short review of recent progress. Extreme Mechanics Letters, 2017, 11, 96-104.	4.1	68

#	Article	IF	CITATIONS
163	Epidermal electronics for noninvasive, wireless, quantitative assessment of ventricular shunt function in patients with hydrocephalus. Science Translational Medicine, 2018, 10, .	12.4	68
164	Biodegradable Polyanhydrides as Encapsulation Layers for Transient Electronics. Advanced Functional Materials, 2020, 30, 2000941.	14.9	67
165	Modulated Degradation of Transient Electronic Devices through Multilayer Silk Fibroin Pockets. ACS Applied Materials & Interfaces, 2015, 7, 19870-19875.	8.0	66
166	Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15398-15406.	7.1	66
167	Post-buckling analysis for the precisely controlled buckling of thin film encapsulated by elastomeric substrates. International Journal of Solids and Structures, 2008, 45, 2014-2023.	2.7	65
168	Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs. Energy and Environmental Science, 2010, 3, 208.	30.8	65
169	Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue. Nature Biomedical Engineering, 2021, 5, 759-771.	22.5	65
170	Chemical Sensing Systems that Utilize Soft Electronics on Thin Elastomeric Substrates with Open Cellular Designs. Advanced Functional Materials, 2017, 27, 1605476.	14.9	64
171	The equivalent medium of cellular substrate under large stretching, with applications to stretchable electronics. Journal of the Mechanics and Physics of Solids, 2018, 120, 199-207.	4.8	62
172	Soft, bioresorbable coolers for reversible conduction block of peripheral nerves. Science, 2022, 377, 109-115.	12.6	62
173	Mechanical Designs for Inorganic Stretchable Circuits in Soft Electronics. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5, 1201-1218.	2.5	61
174	Thin, Transferred Layers of Silicon Dioxide and Silicon Nitride as Water and Ion Barriers for Implantable Flexible Electronic Systems. Advanced Electronic Materials, 2017, 3, 1700077.	5.1	61
175	High Performance, Tunable Electrically Small Antennas through Mechanically Guided 3D Assembly. Small, 2019, 15, e1804055.	10.0	60
176	A Bioresorbable Magnetically Coupled System for Lowâ€Frequency Wireless Power Transfer. Advanced Functional Materials, 2019, 29, 1905451.	14.9	58
177	Enhanced adhesion with pedestal-shaped elastomeric stamps for transfer printing. Applied Physics Letters, 2012, 100, .	3.3	57
178	Ultrathin Trilayer Assemblies as Long-Lived Barriers against Water and Ion Penetration in Flexible Bioelectronic Systems. ACS Nano, 2018, 12, 10317-10326.	14.6	57
179	Submillimeter-scale multimaterial terrestrial robots. Science Robotics, 2022, 7, .	17.6	57
180	Allâ€Elastomeric, Strainâ€Responsive Thermochromic Color Indicators. Small, 2014, 10, 1266-1271.	10.0	56

#	Article	IF	CITATIONS
181	Flexible Transient Optical Waveguides and Surfaceâ€Wave Biosensors Constructed from Monocrystalline Silicon. Advanced Materials, 2018, 30, e1801584.	21.0	55
182	A wireless, skin-interfaced biosensor for cerebral hemodynamic monitoring in pediatric care. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31674-31684.	7.1	55
183	Differential cardiopulmonary monitoring system for artifact-canceled physiological tracking of athletes, workers, and COVID-19 patients. Science Advances, 2021, 7, .	10.3	55
184	Harnessing the interface mechanics of hard films and soft substrates for 3D assembly by controlled buckling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15368-15377.	7.1	54
185	Ferromagnetic, Folded Electrode Composite as a Soft Interface to the Skin for Longâ€Term Electrophysiological Recording. Advanced Functional Materials, 2016, 26, 7281-7290.	14.9	53
186	Bioresorbable Wireless Sensors as Temporary Implants for In Vivo Measurements of Pressure. Advanced Functional Materials, 2020, 30, 2003754.	14.9	53
187	Materials, Mechanics Designs, and Bioresorbable Multisensor Platforms for Pressure Monitoring in the Intracranial Space. Advanced Functional Materials, 2020, 30, 1910718.	14.9	53
188	Buckling of a stiff thin film on a pre-strained bi-layer substrate. International Journal of Solids and Structures, 2014, 51, 3113-3118.	2.7	52
189	Wireless, skin-interfaced sensors for compression therapy. Science Advances, 2020, 6, .	10.3	52
190	Multimodal epidermal devices for hydration monitoring. Microsystems and Nanoengineering, 2017, 3, 17014.	7.0	52
191	Designing Mechanical Metamaterials with Kirigamiâ€Inspired, Hierarchical Constructions for Giant Positive and Negative Thermal Expansion. Advanced Materials, 2021, 33, e2004919.	21.0	51
192	Engineered Elastomer Substrates for Guided Assembly of Complex 3D Mesostructures by Spatially Nonuniform Compressive Buckling. Advanced Functional Materials, 2017, 27, 1604281.	14.9	50
193	Geometrically reconfigurable 3D mesostructures and electromagnetic devices through a rational bottom-up design strategy. Science Advances, 2020, 6, eabb7417.	10.3	50
194	Transferred, Ultrathin Oxide Bilayers as Biofluid Barriers for Flexible Electronic Implants. Advanced Functional Materials, 2018, 28, 1702284.	14.9	49
195	Plasticity-induced origami for assembly of three dimensional metallic structures guided by compressive buckling. Extreme Mechanics Letters, 2017, 11, 105-110.	4.1	48
196	A double perturbation method of postbuckling analysis in 2D curved beams for assembly of 3D ribbon-shaped structures. Journal of the Mechanics and Physics of Solids, 2018, 111, 215-238.	4.8	48
197	Mechanics of reversible adhesion. Soft Matter, 2011, 7, 8657.	2.7	47
198	Ultrathin Injectable Sensors of Temperature, Thermal Conductivity, and Heat Capacity for Cardiac Ablation Monitoring. Advanced Healthcare Materials, 2016, 5, 373-381.	7.6	47

#	Article	IF	CITATIONS
199	Epidermal Electronic Systems for Measuring the Thermal Properties of Human Skin at Depths of up to Several Millimeters. Advanced Functional Materials, 2018, 28, 1802083.	14.9	47
200	Kinetics and Chemistry of Hydrolysis of Ultrathin, Thermally Grown Layers of Silicon Oxide as Biofluid Barriers in Flexible Electronic Systems. ACS Applied Materials & Interfaces, 2017, 9, 42633-42638.	8.0	45
201	Wireless, implantable catheter-type oximeter designed for cardiac oxygen saturation. Science Advances, 2021, 7, .	10.3	45
202	Vibration of mechanically-assembled 3D microstructures formed by compressive buckling. Journal of the Mechanics and Physics of Solids, 2018, 112, 187-208.	4.8	44
203	Microwave purification of large-area horizontally aligned arrays of single-walled carbon nanotubes. Nature Communications, 2014, 5, 5332.	12.8	43
204	3D Tunable, Multiscale, and Multistable Vibrational Microâ€Platforms Assembled by Compressive Buckling. Advanced Functional Materials, 2017, 27, 1605914.	14.9	43
205	Designing Thin, Ultrastretchable Electronics with Stacked Circuits and Elastomeric Encapsulation Materials. Advanced Functional Materials, 2017, 27, 1604545.	14.9	42
206	Remotely Triggered Assembly of 3D Mesostructures Through Shapeâ€Memory Effects. Advanced Materials, 2019, 31, e1905715.	21.0	42
207	Multiple Neutral Axes in Bending of a Multiple-Layer Beam With Extremely Different Elastic Properties. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	2.2	41
208	Materials and Wireless Microfluidic Systems for Electronics Capable of Chemical Dissolution on Demand. Advanced Functional Materials, 2015, 25, 1338-1343.	14.9	41
209	Mechanically Guided Postâ€Assembly of 3D Electronic Systems. Advanced Functional Materials, 2018, 28, 1803149.	14.9	41
210	Complex 3D microfluidic architectures formed by mechanically guided compressive buckling. Science Advances, 2021, 7, eabj3686.	10.3	41
211	Reliable, low-cost, fully integrated hydration sensors for monitoring and diagnosis of inflammatory skin diseases in any environment. Science Advances, 2020, 6, .	10.3	40
212	Skinâ€Interfaced Microfluidic Systems that Combine Hard and Soft Materials for Demanding Applications in Sweat Capture and Analysis. Advanced Healthcare Materials, 2021, 10, e2000722.	7.6	40
213	Complementary metal oxide silicon integrated circuits incorporating monolithically integrated stretchable wavy interconnects. Applied Physics Letters, 2008, 93, 044102.	3.3	39
214	Irregular Hexagonal Cellular Substrate for Stretchable Electronics. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	2.2	39
215	Mechanics of Tunable Hemispherical Electronic Eye Camera Systems That Combine Rigid Device Elements With Soft Elastomers. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	2.2	38
216	Balloon catheters with integrated stretchable electronics for electrical stimulation, ablation and blood flow monitoring. Extreme Mechanics Letters, 2015, 3, 45-54.	4.1	38

#	Article	IF	CITATIONS
217	Three-dimensional electronic scaffolds for monitoring and regulation of multifunctional hybrid tissues. Extreme Mechanics Letters, 2020, 35, 100634.	4.1	38
218	Axisymmetric thermo-mechanical analysis of laser-driven non-contact transfer printing. International Journal of Fracture, 2012, 176, 189-194.	2.2	37
219	Wireless Microfluidic Systems for Programmed, Functional Transformation of Transient Electronic Devices. Advanced Functional Materials, 2015, 25, 5100-5106.	14.9	37
220	A quantitative analysis for the stress field around an elastoplastic indentation/contact. Journal of Materials Research, 2009, 24, 704-718.	2.6	36
221	Three-Dimensional Silicon Electronic Systems Fabricated by Compressive Buckling Process. ACS Nano, 2018, 12, 4164-4171.	14.6	36
222	Temperature- and size-dependent characteristics in ultrathin inorganic light-emitting diodes assembled by transfer printing. Applied Physics Letters, 2014, 104, .	3.3	35
223	Skinâ€Integrated Devices with Soft, Holey Architectures for Wireless Physiological Monitoring, With Applications in the Neonatal Intensive Care Unit. Advanced Materials, 2021, 33, e2103974.	21.0	35
224	Stress focusing for controlled fracture in microelectromechanical systems. Applied Physics Letters, 2007, 90, 083110.	3.3	34
225	Inverse Design Strategies for 3D Surfaces Formed by Mechanically Guided Assembly. Advanced Materials, 2020, 32, e1908424.	21.0	34
226	Catheter-Based Systems With Integrated Stretchable Sensors and Conductors in Cardiac Electrophysiology. Proceedings of the IEEE, 2015, 103, 682-689.	21.3	33
227	Wireless, Skinâ€Interfaced Devices for Pediatric Critical Care: Application to Continuous, Noninvasive Blood Pressure Monitoring. Advanced Healthcare Materials, 2021, 10, e2100383.	7.6	33
228	Mechanicallyâ€Guided Deterministic Assembly of 3D Mesostructures Assisted by Residual Stresses. Small, 2017, 13, 1700151.	10.0	32
229	Controlled mechanical assembly of complex 3D mesostructures and strain sensors by tensile buckling. Npj Flexible Electronics, 2018, 2, .	10.7	31
230	Mechanics of bistable cross-shaped structures through loading-path controlled 3D assembly. Journal of the Mechanics and Physics of Solids, 2019, 129, 261-277.	4.8	31
231	Wireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics in freely moving animals. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	31
232	Wireless, soft electronics for rapid, multisensor measurements of hydration levels in healthy and diseased skin. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	31
233	Ultrathin, Transferred Layers of Metal Silicide as Faradaic Electrical Interfaces and Biofluid Barriers for Flexible Bioelectronic Implants. ACS Nano, 2019, 13, 660-670.	14.6	30
234	Compliant 3D frameworks instrumented with strain sensors for characterization of millimeter-scale engineered muscle tissues. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30

#	Article	IF	CITATIONS
235	Miniaturized wireless, skin-integrated sensor networks for quantifying full-body movement behaviors and vital signs in infants. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
236	A thermal analysis of the operation of microscale, inorganic light-emitting diodes. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 3215-3223.	2.1	29
237	Mechanics of buckled serpentine structures formed via mechanics-guided, deterministic three-dimensional assembly. Journal of the Mechanics and Physics of Solids, 2019, 125, 736-748.	4.8	29
238	Assembly of Foldable 3D Microstructures Using Graphene Hinges. Advanced Materials, 2020, 32, e2001303.	21.0	29
239	Mechanics of stretchable electronics on balloon catheter under extreme deformation. International Journal of Solids and Structures, 2014, 51, 1555-1561.	2.7	28
240	Fabrication and Deformation of 3D Multilayered Kirigami Microstructures. Small, 2018, 14, e1703852.	10.0	28
241	Soft Three-Dimensional Microscale Vibratory Platforms for Characterization of Nano-Thin Polymer Films. ACS Nano, 2019, 13, 449-457.	14.6	28
242	Thermally switchable, crystallizable oil and silicone composite adhesives for skin-interfaced wearable devices. Science Advances, 2022, 8, .	10.3	27
243	Continuous, noninvasive wireless monitoring of flow of cerebrospinal fluid through shunts in patients with hydrocephalus. Npj Digital Medicine, 2020, 3, 29.	10.9	26
244	Biocompatible Light Guideâ€Assisted Wearable Devices for Enhanced UV Light Delivery in Deep Skin. Advanced Functional Materials, 2021, 31, 2100576.	14.9	26
245	Wrinkling of a stiff thin film bonded to a pre-strained, compliant substrate with finite thickness. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160339.	2.1	25
246	Thermal properties of microscale inorganic light-emitting diodes in a pulsed operation. Journal of Applied Physics, 2013, 113, .	2.5	24
247	Advanced approaches for quantitative characterization of thermal transport properties in soft materials using thin, conformable resistive sensors. Extreme Mechanics Letters, 2018, 22, 27-35.	4.1	24
248	Rapidly deployable and morphable 3D mesostructures with applications in multimodal biomedical devices. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	24
249	Collapse of microfluidic channels/reservoirs in thin, soft epidermal devices. Extreme Mechanics Letters, 2017, 11, 18-23.	4.1	23
250	Design and Fabrication of Heterogeneous, Deformable Substrates for the Mechanically Guided 3D Assembly. ACS Applied Materials & Interfaces, 2019, 11, 3482-3492.	8.0	23
251	Skin-interfaced soft microfluidic systems with modular and reusable electronics for <i>in situ</i> capacitive sensing of sweat loss, rate and conductivity. Lab on A Chip, 2020, 20, 4391-4403.	6.0	23
252	Transparent, Compliant 3D Mesostructures for Precise Evaluation of Mechanical Characteristics of Organoids. Advanced Materials, 2021, 33, e2100026.	21.0	23

#	Article	IF	CITATIONS
253	Shear Piezoelectricity in Poly(vinylidenefluorideâ€ <i>co</i> â€ŧrifluoroethylene): Full Piezotensor Coefficients by Molecular Modeling, Biaxial Transverse Response, and Use in Suspended Energyâ€Harvesting Nanostructures. Advanced Materials, 2016, 28, 7633-7639.	21.0	22
254	Intraoperative monitoring of neuromuscular function with soft, skin-mounted wireless devices. Npj Digital Medicine, 2018, 1, .	10.9	22
255	Transformable, Freestanding 3D Mesostructures Based on Transient Materials and Mechanical Interlocking. Advanced Functional Materials, 2019, 29, 1903181.	14.9	22
256	Mechanics Design for Stretchable, High Areal Coverage GaAs Solar Module on an Ultrathin Substrate. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	2.2	21
257	Thermal analysis of injectable, cellular-scale optoelectronics with pulsed power. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20130142.	2.1	20
258	Optimization-Based Approach for the Inverse Design of Ribbon-Shaped Three-Dimensional Structures Assembled Through Compressive Buckling. Physical Review Applied, 2019, 11, .	3.8	20
259	Mechanics of hemispherical electronics. Applied Physics Letters, 2009, 95, 181912.	3.3	19
260	Modeling programmable drug delivery in bioelectronics with electrochemical actuation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
261	Surfaceâ€Coverageâ€Dependent Cycle Stability of Coreâ€Shell Nanostructured Electrodes for Use in Lithium Ion Batteries. Advanced Energy Materials, 2014, 4, 1300472.	19.5	18
262	Collapse of liquid-overfilled strain-isolation substrates in wearable electronics. International Journal of Solids and Structures, 2017, 117, 137-142.	2.7	18
263	Implantable, wireless, self-fixing thermal sensors for continuous measurements of microvascular blood flow in flaps and organ grafts. Biosensors and Bioelectronics, 2022, 206, 114145.	10.1	18
264	Reprogrammable 3D Mesostructures Through Compressive Buckling of Thin Films with Prestrained Shape Memory Polymer. Acta Mechanica Solida Sinica, 2018, 31, 589-598.	1.9	17
265	Ultrathin, High Capacitance Capping Layers for Silicon Electronics with Conductive Interconnects in Flexible, Longâ€Lived Bioimplants. Advanced Materials Technologies, 2020, 5, 1900800.	5.8	17
266	Advanced Materials in Wireless, Implantable Electrical Stimulators that Offer Rapid Rates of Bioresorption for Peripheral Axon Regeneration. Advanced Functional Materials, 2021, 31, 2102724.	14.9	17
267	Bitter Flavored, Soft Composites for Wearables Designed to Reduce Risks of Choking in Infants. Advanced Materials, 2021, 33, e2103857.	21.0	17
268	Mechanically Guided Hierarchical Assembly of 3D Mesostructures. Advanced Materials, 2022, 34, e2109416.	21.0	17
269	Multi-Functional Electronics: Multifunctional Epidermal Electronics Printed Directly Onto the Skin (Adv. Mater. 20/2013). Advanced Materials, 2013, 25, 2772-2772.	21.0	16
270	A Mechanics Model for Sensors Imperfectly Bonded to the Skin for Determination of the Young's Moduli of Epidermis and Dermis. Journal of Applied Mechanics, Transactions ASME, 2016, 83, 0845011-845013.	2.2	16

#	Article	IF	CITATIONS
271	Computational models for the determination of depth-dependent mechanical properties of skin with a soft, flexible measurement device. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160225.	2.1	16
272	Torsional deformation dominated buckling of serpentine structures to form three-dimensional architectures with ultra-low rigidity. Journal of the Mechanics and Physics of Solids, 2021, 155, 104568.	4.8	16
273	Design and Assembly of Reconfigurable 3D Radioâ€Frequency Antennas Based on Mechanically Triggered Switches. Advanced Electronic Materials, 2019, 5, 1900256.	5.1	14
274	Preparation and use of wireless reprogrammable multilateral optogenetic devices for behavioral neuroscience. Nature Protocols, 2022, 17, 1073-1096.	12.0	14
275	Anisotropic Mechanics of Cellular Substrate Under Finite Deformation. Journal of Applied Mechanics, Transactions ASME, 2018, 85, .	2.2	13
276	An Inverse Design Method of Buckling-Guided Assembly for Ribbon-Type 3D Structures. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	2.2	13
277	Thermal and Mechanical Analyses of Compliant Thermoelectric Coils for Flexible and Bio-Integrated Devices. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	2.2	13
278	Island Effect in Stretchable Inorganic Electronics. Small, 2022, 18, e2107879.	10.0	13
279	COARSE GRAINED MODELING OF BIOPOLYMERS AND PROTEINS: METHODS AND APPLICATIONS. International Journal of Applied Mechanics, 2009, 01, 113-136.	2.2	12
280	More evidence of the crucial roles of surface superhydrophobicity in free and safe maneuver of water strider. Applied Physics Letters, 2011, 99, .	3.3	12
281	Thermal analysis of ultrathin, compliant sensors for characterization of the human skin. RSC Advances, 2014, 4, 5694.	3.6	12
282	Probabilistic Analysis of Stress Corrosion Crack Growth and Related Structural Reliability Considerations. Journal of Applied Mechanics, Transactions ASME, 2016, 83, .	2.2	12
283	Thin, Millimeter Scale Fingernail Sensors for Thermal Characterization of Nail Bed Tissue. Advanced Functional Materials, 2018, 28, 1801380.	14.9	12
284	Design of Stretchable Electronics Against Impact. Journal of Applied Mechanics, Transactions ASME, 2016, 83, 1010091-1010095.	2.2	11
285	Mechanics and deformation of shape memory polymer kirigami microstructures. Extreme Mechanics Letters, 2020, 39, 100831.	4.1	10
286	Mechanics of encapsulated three-dimensional structures for simultaneous sensing of pressure and shear stress. Journal of the Mechanics and Physics of Solids, 2021, 151, 104400.	4.8	10
287	Epidermal Electronics: Wireless, Batteryâ€Free Epidermal Electronics for Continuous, Quantitative, Multimodal Thermal Characterization of Skin (Small 47/2018). Small, 2018, 14, 1870226.	10.0	9
288	Recent progress of morphable 3D mesostructures in advanced materials. Journal of Semiconductors, 2020, 41, 041604.	3.7	9

#	Article	IF	CITATIONS
289	Theoretical modeling of tunable vibrations of three-dimensional serpentine structures for simultaneous measurement of adherent cell mass and modulus. MRS Bulletin, 2021, 46, 107-114.	3.5	9
290	Fundamental effects in nanoscale thermocapillary flow. Journal of Applied Physics, 2014, 115, 054315.	2.5	8
291	Modeling of thermocapillary flow to purify single-walled carbon nanotubes. RSC Advances, 2014, 4, 42454-42461.	3.6	8
292	Stretchable Electronics: Epidermal Electronics with Advanced Capabilities in Near-Field Communication (Small 8/2015). Small, 2015, 11, 905-905.	10.0	8
293	Measurement of Blood Pressure via a Skin-Mounted, Non-Invasive Pressure Sensor. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	2.2	8
294	Flexible Electronics: An Epidermal Stimulation and Sensing Platform for Sensorimotor Prosthetic Control, Management of Lower Back Exertion, and Electrical Muscle Activation (Adv. Mater. 22/2016). Advanced Materials, 2016, 28, 4563-4563.	21.0	7
295	Bioresorbable Multilayer Photonic Cavities as Temporary Implants for Tether-Free Measurements of Regional Tissue Temperatures. BME Frontiers, 2021, 2021, .	4.5	7
296	Defect Tolerance and Nanomechanics in Transistors that Use Semiconductor Nanomaterials and Ultrathin Dielectrics. Advanced Functional Materials, 2008, 18, 2535-2540.	14.9	6
297	Epidermal Systems: Soft Core/Shell Packages for Stretchable Electronics (Adv. Funct. Mater. 24/2015). Advanced Functional Materials, 2015, 25, 3697-3697.	14.9	6
298	Flexible Electronics: Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature (Adv. Healthcare Mater. 1/2016). Advanced Healthcare Materials, 2016, 5, 2-2.	7.6	6
299	Sensors: Flexible and Stretchable 3ï‰ Sensors for Thermal Characterization of Human Skin (Adv. Funct.) Tj ETQq	l] 0,7843 14.9	814 rgBT /0
300	Highly switchable and reversible dry adhesion for transfer printing. National Science Review, 2020, 7, 558-559.	9.5	6
301	Cellular Substrate to Facilitate Global Buckling of Serpentine Structures. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	2.2	6
302	Flexible electronics with dynamic interfaces for biomedical monitoring, stimulation, and characterization. International Journal of Mechanical System Dynamics, 2021, 1, 52-70.	2.8	6
303	Transient Electronics: Dissolvable Metals for Transient Electronics (Adv. Funct. Mater. 5/2014). Advanced Functional Materials, 2014, 24, 644-644.	14.9	5
304	Stretchable Electronics: Inâ€Plane Deformation Mechanics for Highly Stretchable Electronics (Adv.) Tj ETQq0 0 0 i	rgBT /Over 21.0	lgck 10 Tf S
305	Postbuckling analyses of frame mesostructures consisting of straight ribbons for mechanically guided three-dimensional assembly. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190012.	2.1	5
306	Biomedical Sensors: Materials and Designs for Wireless Epidermal Sensors of Hydration and Strain	14.9	4

306 (Adv. Funct. Mater. 25/2014). Advanced Functional Materials, 2014, 24, 3845-3845.

18

#	Article	IF	CITATIONS
307	Oximetry: Miniaturized Batteryâ€Free Wireless Systems for Wearable Pulse Oximetry (Adv. Funct. Mater.) Tj ETQ	q118.78	4314 rgBT
308	Epidermal Electronics: Miniaturized Flexible Electronic Systems with Wireless Power and Nearâ€Field Communication Capabilities (Adv. Funct. Mater. 30/2015). Advanced Functional Materials, 2015, 25, 4919-4919.	14.9	3
309	Epidermal Thermal Depth Sensors: Epidermal Electronic Systems for Measuring the Thermal Properties of Human Skin at Depths of up to Several Millimeters (Adv. Funct. Mater. 34/2018). Advanced Functional Materials, 2018, 28, 1870242.	14.9	3
310	A mechanics model for injectable microsystems in drug delivery. Journal of the Mechanics and Physics of Solids, 2021, 156, 104622.	4.8	3
311	Analytical Modeling of Flowrate and Its Maxima in Electrochemical Bioelectronics with Drug Delivery Capabilities. Research, 2022, 2022, 9805932.	5.7	3
312	Modeling fracture in carbon nanotubes using a meshless atomic-scale finite-element method. Jom, 2008, 60, 50-55.	1.9	2
313	Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. , 2010, , 38-46.		2
314	Flexible Electronics: Materials and Designs for Wirelessly Powered Implantable Lightâ€Emitting Systems (Small 18/2012). Small, 2012, 8, 2770-2770.	10.0	2
315	Membranes: Materials and Fractal Designs for 3D Multifunctional Integumentary Membranes with Capabilities in Cardiac Electrotherapy (Adv. Mater. 10/2015). Advanced Materials, 2015, 27, 1730-1730.	21.0	2
316	Analyses of postbuckling in stretchable arrays of nanostructures for wide-band tunable plasmonics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150632.	2.1	2
317	Electronic Stuctures: Mechanically Guided Postâ€Assembly of 3D Electronic Systems (Adv. Funct. Mater.) Tj ETQo	110.78 14.9	4314 rgBT /
318	Implantation and Control of Wireless, Battery-free Systems for Peripheral Nerve Interfacing. Journal of Visualized Experiments, 2021, , .	0.3	2
319	3D Assembly: Controlled Mechanical Buckling for Origamiâ€Inspired Construction of 3D Microstructures in Advanced Materials (Adv. Funct. Mater. 16/2016). Advanced Functional Materials, 2016, 26, 2586-2586.	14.9	1
320	Optical Waveguides: Flexible Transient Optical Waveguides and Surface-Wave Biosensors Constructed from Monocrystalline Silicon (Adv. Mater. 32/2018). Advanced Materials, 2018, 30, 1870239.	21.0	1
321	Theoretical modeling of tunable vibrations of three-dimensional serpentine structures for simultaneous measurement of adherent cell mass and modulus. MRS Bulletin, 2021, 46, 1-8.	3.5	1
322	Electrochemical Bioelectronics in Drug Delivery: Effect of the Initial Gas Volume. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	2.2	1
323	Mechanics modeling of electrodes for wireless and bioresorbable capacitive pressure sensors. Journal of Applied Mechanics, Transactions ASME, 0, , 1-19.	2.2	1
324	Inside Front Cover: Defect Tolerance and Nanomechanics in Transistors that Use Semiconductor Nanomaterials and Ultrathin Dielectrics (Adv. Funct. Mater. 17/2008). Advanced Functional Materials, 2008, 18, .	14.9	0

#	Article	IF	CITATIONS
325	Size effect in plastically deformed passivated thin films. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52, 1375-1381.	0.2	0
326	Electronically Programmable, Reversible Shape Change in Two- and Three-Dimensional Hydrogel Structures (Adv. Mater. 11/2013). Advanced Materials, 2013, 25, 1540-1540.	21.0	0
327	Ultrathin Injectable Sensors: Ultrathin Injectable Sensors of Temperature, Thermal Conductivity, and Heat Capacity for Cardiac Ablation Monitoring (Adv. Healthcare Mater. 3/2016). Advanced Healthcare Materials, 2016, 5, 394-394.	7.6	0
328	Electrodes: Ferromagnetic, Folded Electrode Composite as a Soft Interface to the Skin for Longâ€Term Electrophysiological Recording (Adv. Funct. Mater. 40/2016). Advanced Functional Materials, 2016, 26, 7280-7280.	14.9	0
329	4D Electronic Systems: Transformable, Freestanding 3D Mesostructures Based on Transient Materials and Mechanical Interlocking (Adv. Funct. Mater. 40/2019). Advanced Functional Materials, 2019, 29, 1970277.	14.9	0
330	Inverse Design Methods: Inverse Design Strategies for 3D Surfaces Formed by Mechanically Guided Assembly (Adv. Mater. 14/2020). Advanced Materials, 2020, 32, 2070107.	21.0	0
331	3D Microstructures: Transparent, Compliant 3D Mesostructures for Precise Evaluation of Mechanical Characteristics of Organoids (Adv. Mater. 25/2021). Advanced Materials, 2021, 33, 2170196.	21.0	0