Lan-Yue Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2625866/publications.pdf Version: 2024-02-01

LAN-YUE CIU

#	Article	IF	CITATIONS
1	Advances in functionalized polymer coatings on biodegradable magnesium alloys – A review. Acta Biomaterialia, 2018, 79, 23-36.	8.3	338
2	Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31. Corrosion Science, 2017, 118, 84-95.	6.6	335
3	In Vitro Corrosion and Cytocompatibility of a Microarc Oxidation Coating and Poly(<scp> </scp> -lactic acid) Composite Coating on Mg–1Li–1Ca Alloy for Orthopedic Implants. ACS Applied Materials & Interfaces, 2016, 8, 10014-10028.	8.0	256
4	Degradation mechanism of micro-arc oxidation coatings on biodegradable Mg-Ca alloys: The influence of porosity. Journal of Alloys and Compounds, 2017, 695, 2464-2476.	5.5	158
5	Corrosion resistance and antibacterial activity of zinc-loaded montmorillonite coatings on biodegradable magnesium alloy AZ31. Acta Biomaterialia, 2019, 98, 196-214.	8.3	114
6	Self-degradation of micro-arc oxidation/chitosan composite coating on Mg-4Li-1Ca alloy. Surface and Coatings Technology, 2018, 344, 1-11.	4.8	104
7	Corrosion resistance of glucose-induced hydrothermal calcium phosphate coating on pure magnesium. Applied Surface Science, 2019, 465, 1066-1077.	6.1	97
8	InÂvitro corrosion of micro-arc oxidation coating on Mg-1Li-1Ca alloy — The influence of intermetallic compound Mg2Ca. Journal of Alloys and Compounds, 2018, 764, 250-260.	5.5	95
9	Corrosion resistance of a ceria/polymethyltrimethoxysilane modified Mg-Al-layered double hydroxide on AZ31 magnesium alloy. Journal of Alloys and Compounds, 2018, 764, 913-928.	5.5	88
10	Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31—Influence of EDTA. Journal of Materials Science and Technology, 2019, 35, 1088-1098.	10.7	86
11	Corrosion resistance of a superhydrophobic micro-arc oxidation coating on Mg-4Li-1Ca alloy. Journal of Materials Science and Technology, 2017, 33, 1263-1271.	10.7	84
12	Exfoliation corrosion of extruded Mg-Li-Ca alloy. Journal of Materials Science and Technology, 2018, 34, 1550-1557.	10.7	84
13	Advance in Antibacterial Magnesium Alloys and Surface Coatings on Magnesium Alloys: A Review. Acta Metallurgica Sinica (English Letters), 2020, 33, 615-629.	2.9	80
14	Corrosion Resistance of Superhydrophobic Mg–Al Layered Double Hydroxide Coatings on Aluminum Alloys. Acta Metallurgica Sinica (English Letters), 2015, 28, 1373-1381.	2.9	70
15	Corrosion resistance of bioinspired DNA-induced Ca–P coating on biodegradable magnesium alloy. Journal of Magnesium and Alloys, 2019, 7, 144-154.	11.9	68
16	In vitro corrosion resistance of a Ta2O5 nanofilm on MAO coated magnesium alloy AZ31 by atomic layer deposition. Bioactive Materials, 2020, 5, 34-43.	15.6	61
17	In vitro corrosion resistance of a layer-by-layer assembled DNA coating on magnesium alloy. Applied Surface Science, 2018, 457, 49-58.	6.1	57
18	In vitro corrosion resistance and antibacterial performance of novel tin dioxide-doped calcium phosphate coating on degradable Mg-1Li-1Ca alloy. Journal of Materials Science and Technology, 2019, 35, 254-265.	10.7	57

LAN-YUE CUI

#	Article	IF	CITATIONS
19	Corrosion resistance of layer-by-layer assembled polyvinylpyrrolidone/polyacrylic acid and amorphous silica films on AZ31 magnesium alloys. RSC Advances, 2016, 6, 63107-63116.	3.6	56
20	In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31. Journal of Materials Science and Technology, 2020, 47, 52-67.	10.7	55
21	Corrosion resistance and antibacterial activity of hydroxyapatite coating induced by ciprofloxacin-loaded polymeric multilayers on magnesium alloy. Progress in Organic Coatings, 2019, 135, 465-474.	3.9	53
22	In vitro degradation of pure magnesium―the synergetic influences of glucose and albumin. Bioactive Materials, 2020, 5, 318-333.	15.6	50
23	New insights into the effect of Tris-HCl and Tris on corrosion of magnesium alloy in presence of bicarbonate, sulfate, hydrogen phosphate and dihydrogen phosphate ions. Journal of Materials Science and Technology, 2017, 33, 971-986.	10.7	49
24	Dealloying corrosion of anodic and nanometric Mg41Nd5 in solid solution-treated Mg-3Nd-1Li-0.2Zn alloy. Journal of Materials Science and Technology, 2021, 83, 161-178.	10.7	49
25	In vitro corrosion resistance of layer-by-layer assembled polyacrylic acid multilayers induced Ca–P coating on magnesium alloy AZ31. Bioactive Materials, 2020, 5, 153-163.	15.6	48
26	In vitro corrosion resistance and antibacterial properties of layer-by-layer assembled chitosan/poly-L-glutamic acid coating on AZ31 magnesium alloys. Transactions of Nonferrous Metals Society of China, 2017, 27, 1081-1086.	4.2	47
27	Electrodeposition of TiO 2 layer-by-layer assembled composite coating and silane treatment on Mg alloy for corrosion resistance. Surface and Coatings Technology, 2017, 324, 560-568.	4.8	46
28	Corrosion resistance and electrical conductivity of a nano ATO-doped MAO/methyltrimethoxysilane composite coating on magnesium alloy AZ31. Corrosion Science, 2020, 168, 108570.	6.6	46
29	In Vitro Degradation of Pure Magnesium―The Effects of Glucose and/or Amino Acid. Materials, 2017, 10, 725.	2.9	43
30	In vitro degradation and biocompatibility of Mg-Li-Ca alloys—the influence of Li content. Science China Materials, 2018, 61, 607-618.	6.3	38
31	In Vitro Corrosion and Antibacterial Performance of Micro-Arc Oxidation Coating on AZ31 Magnesium Alloy: Effects of Tannic Acid. Journal of the Electrochemical Society, 2018, 165, C821-C829.	2.9	38
32	In vitro corrosion resistance, antibacterial activity and cytocompatibility of a layer-by-layer assembled DNA coating on magnesium alloy. Journal of Magnesium and Alloys, 2021, 9, 266-280.	11.9	37
33	Advances in layer-by-layer self-assembled coatings upon biodegradable magnesium alloys. Science China Materials, 2021, 64, 2093-2106.	6.3	37
34	Corrosion Resistance of Silane-Modified Hydroxyapatite Films on Degradable Magnesium Alloys. Acta Metallurgica Sinica (English Letters), 2018, 31, 180-188.	2.9	34
35	In vitro corrosion of Mg–Ca alloy — The influence of glucose content. Frontiers of Materials Science, 2017, 11, 284-295.	2.2	33
36	In vitro corrosion of pure Mg in phosphate buffer solution—Influences of isoelectric point and molecular structure of amino acids. Materials Science and Engineering C, 2019, 105, 110042.	7.3	33

LAN-YUE CUI

#	Article	IF	CITATIONS
37	Advances in bioorganic molecules inspired degradation and surface modifications on Mg and its alloys. Journal of Magnesium and Alloys, 2022, 10, 670-688.	11.9	33
38	Corrosion resistance of a novel SnO2-doped dicalcium phosphate coating on AZ31 magnesium alloy. Bioactive Materials, 2018, 3, 245-249.	15.6	32
39	In vitro degradation, photo-dynamic and thermal antibacterial activities of Cu-bearing chlorophyllin-induced Ca–P coating on magnesium alloy AZ31. Bioactive Materials, 2022, 18, 284-299.	15.6	29
40	Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31. Frontiers of Materials Science, 2016, 10, 134-146.	2.2	27
41	In vitro degradation and multi-antibacterial mechanisms of β-cyclodextrin@curcumin embodied Mg(OH)2/MAO coating on AZ31 magnesium alloy. Journal of Materials Science and Technology, 2023, 132, 179-192.	10.7	27
42	Corrosion resistance and tunable release of ciprofloxacin-loaded multilayers on magnesium alloy: Effects of SiO2 nanoparticles. Applied Surface Science, 2020, 508, 145240.	6.1	21
43	Corrosion resistance, antibacterial activity and drug release of ciprofloxacin-loaded micro-arc oxidation/silane coating on magnesium alloy AZ31. Progress in Organic Coatings, 2021, 158, 106357.	3.9	14
44	In vitro degradation resistance of glucose and L-cysteine-bioinspired Schiff-base anodic Ca–P coating on AZ31 magnesium alloy. Transactions of Nonferrous Metals Society of China, 2022, 32, 1485-1500.	4.2	9
45	Corrosion resistance of Ca-P coating induced by layer-by-layer assembled polyvinylpyrrolidone/DNA multilayer on magnesium AZ31 alloy. Frontiers of Materials Science, 2021, 15, 391-405.	2.2	7
46	In vitro degradation and biocompatibility of vitamin C loaded Ca-P coating on a magnesium alloy for bioimplant applications. Corrosion Communications, 2022, 6, 16-28.	6.0	7
47	Polyphosphate assisted hydrothermal synthesis of hydroxyapatite coating on Mg alloys: Enhanced mechanical properties and corrosion resistance. Surface and Coatings Technology, 2022, 432, 128033.	4.8	6
48	Corrosion resistance of Mg-Al-LDH steam coating on AZ80 Mg alloy: Effects of citric acid pretreatment and intermetallic compounds. Journal of Magnesium and Alloys, 2023, 11, 2967-2979.	11.9	6
49	Gentamicin loaded polyelectrolyte multilayers and strontium doped hydroxyapatite composite coating on Ti-6Al-4V alloy: antibacterial ability and biocompatibility. Materials Technology, 2022, 37, 1478-1485. –	3.0	3
50	Corrosion Resistance of Polyelectrolyte/SiO2 Nanoparticles Multilayers on Magnesium Alloy: Effect of Heat Treatment. Journal of Materials Engineering and Performance, 2021, 30, 9283-9289.	2.5	2