Isabelle Coppens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/262571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages. Journal of Experimental Medicine, 2006, 203, 2063-2071.	4.2	332
3	Toxoplasma gondii Sequesters Lysosomes from Mammalian Hosts in the Vacuolar Space. Cell, 2006, 125, 261-274.	13.5	311
4	Toxoplasma gondii Exploits Host Low-Density Lipoprotein Receptor-Mediated Endocytosis for Cholesterol Acquisition. Journal of Cell Biology, 2000, 149, 167-180.	2.3	280
5	Rapid Membrane Disruption by a Perforin-Like Protein Facilitates Parasite Exit from Host Cells. Science, 2009, 323, 530-533.	6.0	268
6	Golgi biogenesis in Toxoplasma gondii. Nature, 2002, 418, 548-552.	13.7	184
7	Myosin A tail domain interacting protein (MTIP) localizes to the inner membrane complex ofPlasmodiumsporozoites. Journal of Cell Science, 2003, 116, 39-49.	1.2	182
8	Activation of NF-κB by Toxoplasma gondii correlates with increased expression of antiapoptotic genes and localization of phosphorylated IIºB to the parasitophorous vacuole membrane. Journal of Cell Science, 2003, 116, 4359-4371.	1.2	162
9	Characterization of a novel organelle in Toxoplasma gondii with similar composition and function to the plant vacuole. Molecular Microbiology, 2010, 76, 1358-1375.	1.2	152
10	Autophagy in protists. Autophagy, 2011, 7, 127-158.	4.3	148
11	Host but Not Parasite Cholesterol ControlsToxoplasmaCell Entry by Modulating Organelle Discharge. Molecular Biology of the Cell, 2003, 14, 3804-3820.	0.9	143
12	Plasmodium yoelii Sporozoites with Simultaneous Deletion of P52 and P36 Are Completely Attenuated and Confer Sterile Immunity against Infection. Infection and Immunity, 2007, 75, 3758-3768.	1.0	143
13	Host ER–parasitophorous vacuole interaction provides a route of entry for antigen cross-presentation in <i>Toxoplasma gondii</i> –infected dendritic cells. Journal of Experimental Medicine, 2009, 206, 399-410.	4.2	142
14	<i>In Vivo</i> Biotinylation of the <i>Toxoplasma</i> Parasitophorous Vacuole Reveals Novel Dense Granule Proteins Important for Parasite Growth and Pathogenesis. MBio, 2016, 7, .	1.8	125
15	Host lipid droplets: An important source of lipids salvaged by the intracellular parasite Toxoplasma gondii. PLoS Pathogens, 2017, 13, e1006362.	2.1	124
16	Cathepsin L occupies a vacuolar compartment and is a protein maturase within the endo/exocytic system of Toxoplasma gondii. Molecular Microbiology, 2010, 76, 1340-1357.	1.2	123
17	Cellular interactions of Plasmodium liver stage with its host mammalian cell. International Journal for Parasitology, 2007, 37, 1329-1341.	1.3	115
18	Apicomplexan gliding motility and host cell invasion: overhauling the motor model. Trends in Parasitology, 2004, 20, 13-16.	1.5	114

#	Article	IF	CITATIONS
19	Autophagy in parasitic protists: Unique features and drug targets. Molecular and Biochemical Parasitology, 2011, 177, 83-99.	0.5	111
20	<i>Plasmodium</i> ookinetes coopt mammalian plasminogen to invade the mosquito midgut. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17153-17158.	3.3	109
21	<i>Toxoplasma gondii</i> salvages sphingolipids from the host Golgi through the rerouting of selected Rab vesicles to the parasitophorous vacuole. Molecular Biology of the Cell, 2013, 24, 1974-1995.	0.9	108
22	Fundamental Roles of the Golgi-Associated Toxoplasma Aspartyl Protease, ASP5, at the Host-Parasite Interface. PLoS Pathogens, 2015, 11, e1005211.	2.1	108
23	Listeria monocytogenes virulence factors, including listeriolysin O, are secreted in biologically active extracellular vesicles. Journal of Biological Chemistry, 2019, 294, 1202-1217.	1.6	108
24	Translation Regulation by Eukaryotic Initiation Factor-2 Kinases in the Development of Latent Cysts in Toxoplasma gondii. Journal of Biological Chemistry, 2008, 283, 16591-16601.	1.6	105
25	The host cell transcription factor hypoxia-inducible factor 1 is required for Toxoplasma gondii growth and survival at physiological oxygen levels. Cellular Microbiology, 2006, 8, 339-352.	1.1	103
26	A Cleavable Propeptide Influences Toxoplasma Infection by Facilitating the Trafficking and Secretion of the TgMIC2–M2AP Invasion Complex. Molecular Biology of the Cell, 2006, 17, 4551-4563.	0.9	98
27	Plasmodium salvages cholesterol internalized by LDL and synthesized de novo in the liver. Cellular Microbiology, 2011, 13, 569-586.	1.1	98
28	Targeted deletion of <i>SAP1</i> abolishes the expression of infectivity factors necessary for successful malaria parasite liver infection. Molecular Microbiology, 2008, 69, 152-163.	1.2	97
29	A member of a conserved Plasmodium protein family with membrane-attack complex/perforin (MACPF)-like domains localizes to the micronemes of sporozoites. Molecular and Biochemical Parasitology, 2004, 133, 15-26.	0.5	94
30	A Surface Phospholipase Is Involved in the Migration of Plasmodium Sporozoites through Cells. Journal of Biological Chemistry, 2005, 280, 6752-6760.	1.6	88
31	A Thioredoxin Family Protein of the Apicoplast Periphery Identifies Abundant Candidate Transport Vesicles in <i>Toxoplasma gondii</i> . Eukaryotic Cell, 2008, 7, 1518-1529.	3.4	88
32	Selective Disruption of Phosphatidylcholine Metabolism of the Intracellular Parasite Toxoplasma gondii Arrests Its Growth. Journal of Biological Chemistry, 2005, 280, 16345-16353.	1.6	87
33	A Toxoplasma Palmitoyl Acyl Transferase and the Palmitoylated Armadillo Repeat Protein TgARO Govern Apical Rhoptry Tethering and Reveal a Critical Role for the Rhoptries in Host Cell Invasion but Not Egress. PLoS Pathogens, 2013, 9, e1003162.	2.1	82
34	Host cell lipids control cholesteryl ester synthesis and storage in intracellular Toxoplasma. Cellular Microbiology, 2005, 7, 849-867.	1.1	81
35	Targeting lipid biosynthesis and salvage in apicomplexan parasites for improved chemotherapies. Nature Reviews Microbiology, 2013, 11, 823-835.	13.6	80
36	Remodeling of the malaria parasite and host human red cell by vesicle amplification that induces artemisinin resistance. Blood, 2018, 131, 1234-1247.	0.6	80

#	Article	IF	CITATIONS
37	Plasmodium falciparum CRK4 directs continuous rounds of DNA replication during schizogony. Nature Microbiology, 2017, 2, 17017.	5.9	79
38	Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Science Advances, 2020, 6, .	4.7	79
39	<i>>Plasmodium falciparum</i> ATG8 implicated in both autophagy and apicoplast formation. Autophagy, 2013, 9, 1540-1552.	4.3	77
40	Eosinophil-derived IL-4 drives progression of myocarditis to inflammatory dilated cardiomyopathy. Journal of Experimental Medicine, 2017, 214, 943-957.	4.2	76
41	Host Plasma Low Density Lipoprotein Particles as an Essential Source of Lipids for the Bloodstream Forms of Trypanosoma brucei. Journal of Biological Chemistry, 1995, 270, 5736-5741.	1.6	74
42	Metamorphosis of the malaria parasite in the liver is associated with organelle clearance. Cell Research, 2010, 20, 1043-1059.	5.7	74
43	The parasite <i>Toxoplasma</i> sequesters diverse Rab host vesicles within an intravacuolar network. Journal of Cell Biology, 2017, 216, 4235-4254.	2.3	74
44	Toxoplasma depends on lysosomal consumption of autophagosomes for persistent infection. Nature Microbiology, 2017, 2, 17096.	5.9	72
45	The uptake of the trypanocidal drug suramin in combination with low-density lipoproteins by Trypanosoma brucei and its possible mode of action. Acta Tropica, 1993, 54, 237-250.	0.9	70
46	Cell cycle-regulated vesicular trafficking of Toxoplasma APT1, a protein localized to multiple apicoplast membranes. Molecular Microbiology, 2007, 63, 1653-1668.	1.2	70
47	Contribution of host lipids to Toxoplasma pathogenesis. Cellular Microbiology, 2006, 8, 1-9.	1.1	69
48	A highâ€affinity putrescine adaverine transporter from <i>Trypanosoma cruzi</i> . Molecular Microbiology, 2010, 76, 78-91.	1.2	69
49	Insights into unique physiological features of neutral lipids in Apicomplexa: from storage to potential mediation in parasite metabolic activities. International Journal for Parasitology, 2005, 35, 597-615.	1.3	64
50	Protective Properties and Surface Localization of <i>Plasmodium falciparum</i> Enolase. Infection and Immunity, 2007, 75, 5500-5508.	1.0	64
51	On the biogenesis of lipid bodies in ancient eukaryotes: synthesis of triacylglycerols by a Toxoplasma DGAT1-related enzyme. Molecular and Biochemical Parasitology, 2004, 138, 107-122.	0.5	61
52	Exploitation of auxotrophies and metabolic defects in Toxoplasma as therapeutic approaches. International Journal for Parasitology, 2014, 44, 109-120.	1.3	61
53	The Clutathione Biosynthetic Pathway of Plasmodium Is Essential for Mosquito Transmission. PLoS Pathogens, 2009, 5, e1000302.	2.1	58
54	Structural characterization and inhibition of the Plasmodium Atg8–Atg3 interaction. Journal of Structural Biology, 2012, 180, 551-562.	1.3	58

#	Article	IF	CITATIONS
55	Toxoplasma gondii Rab5 enhances cholesterol acquisition from host cells. Cellular Microbiology, 2002, 4, 139-152.	1.1	57
56	Glutathione Reductase-null Malaria Parasites Have Normal Blood Stage Growth but Arrest during Development in the Mosquito. Journal of Biological Chemistry, 2010, 285, 27045-27056.	1.6	52
57	Exogenous and endogenous sources of sterols in the culture-adapted procyclic trypomastigotes of Trypanosoma brucei. Molecular and Biochemical Parasitology, 1995, 73, 179-188.	0.5	51
58	Neutral lipid synthesis and storage in the intraerythrocytic stages of Plasmodium falciparum. Molecular and Biochemical Parasitology, 2004, 135, 197-209.	0.5	50
59	Pleiotropic effect due to targeted depletion of secretory rhoptry protein ROP2 inToxoplasma gondii. Journal of Cell Science, 2003, 116, 2311-2320.	1.2	49
60	A Membrane Protease is Targeted to the Relict Plastid of <i>Toxoplasma </i> via an Internal Signal Sequence. Traffic, 2007, 8, 1543-1553.	1.3	49
61	Role of acidic compartments in Trypanosoma brucei, with special reference to low-density lipoprotein processing. Molecular and Biochemical Parasitology, 1993, 58, 223-232.	0.5	48
62	A Lipolytic Lecithin:Cholesterol Acyltransferase Secreted by Toxoplasma Facilitates Parasite Replication and Egress. Journal of Biological Chemistry, 2016, 291, 3725-3746.	1.6	48
63	Peculiarities of Host Cholesterol Transport to the Unique Intracellular Vacuole Containing Toxoplasma. Traffic, 2005, 6, 1125-1141.	1.3	46
64	Fussing About Fission: Defining Variety Among Mainstream and Exotic Apicomplexan Cell Division Modes. Frontiers in Cellular and Infection Microbiology, 2020, 10, 269.	1.8	46
65	Intracellular trafficking of dense granule proteins in Toxoplasma gondii and experimental evidences for a regulated exocytosis. European Journal of Cell Biology, 1999, 78, 463-472.	1.6	45
66	Activity, pharmacological inhibition and biological regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Trypanosoma brucei. Molecular and Biochemical Parasitology, 1995, 69, 29-40.	0.5	44
67	The Plasmodium falciparum Vps4 homolog mediates multivesicular body formation. Journal of Cell Science, 2004, 117, 3831-3838.	1.2	44
68	Characterization of the ATG8-conjugation system in 2 <i>Plasmodium</i> species with special focus on the liver stage. Autophagy, 2014, 10, 269-284.	4.3	42
69	<i>KCTD7</i> deficiency defines a distinct neurodegenerative disorder with a conserved autophagyâ€lysosome defect. Annals of Neurology, 2018, 84, 766-780.	2.8	42
70	Neospora caninum Recruits Host Cell Structures to Its Parasitophorous Vacuole and Salvages Lipids from Organelles. Eukaryotic Cell, 2015, 14, 454-473.	3.4	40
71	Na+ Influx Induced by New Antimalarials Causes Rapid Alterations in the Cholesterol Content and Morphology of Plasmodium falciparum. PLoS Pathogens, 2016, 12, e1005647.	2.1	40
72	Endothelial thrombomodulin downregulation caused by hypoxia contributes to severe infiltration and coagulopathy in COVID-19 patient lungs. EBioMedicine, 2022, 75, 103812.	2.7	39

#	Article	IF	CITATIONS
73	Toxoplasma gondii is capable of exogenous folate transport. Molecular and Biochemical Parasitology, 2005, 144, 44-54.	0.5	38
74	Distinct Roles of Plasmodium Rhomboid 1 in Parasite Development and Malaria Pathogenesis. PLoS Pathogens, 2009, 5, e1000262.	2.1	38
75	The Cardiac Microenvironment Instructs Divergent Monocyte Fates and Functions in Myocarditis. Cell Reports, 2019, 28, 172-189.e7.	2.9	38
76	MYST Family Lysine Acetyltransferase Facilitates Ataxia Telangiectasia Mutated (ATM) Kinase-mediated DNA Damage Response in Toxoplasma gondii. Journal of Biological Chemistry, 2010, 285, 11154-11161.	1.6	37
77	Characterization of a second sterolâ€esterifying enzyme in <i><scp>T</scp>oxoplasma</i> highlights the importance of cholesterol storage pathways for the parasite. Molecular Microbiology, 2013, 87, 951-967.	1.2	37
78	Host Organelle Hijackers: a similarmodus operandiforToxoplasma gondiiandChlamydia trachomatis: co-infection model as a tool to investigate pathogenesis. Pathogens and Disease, 2013, 69, 72-86.	0.8	36
79	<i>Cryptosporidium parvum</i> scavenges LDL-derived cholesterol and micellar cholesterol internalized into enterocytes. Cellular Microbiology, 2013, 15, 1182-1197.	1.1	36
80	Effect of host cell lipid metabolism on alphavirus replication, virion morphogenesis, and infectivity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16326-16331.	3.3	35
81	Novel Approaches To Kill Toxoplasma gondii by Exploiting the Uncontrolled Uptake of Unsaturated Fatty Acids and Vulnerability to Lipid Storage Inhibition of the Parasite. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	35
82	Novel roles for ATPâ€binding cassette G transporters in lipid redistribution in <i>Toxoplasma</i> . Molecular Microbiology, 2010, 76, 1232-1249.	1.2	34
83	A novel dense granule protein, GRA41, regulates timing of egress and calcium sensitivity in <i>Toxoplasma gondii</i> . Cellular Microbiology, 2017, 19, e12749.	1.1	34
84	Oxidosqualene Cyclase Inhibitors as Antimicrobial Agents. Journal of Medicinal Chemistry, 2003, 46, 4240-4243.	2.9	33
85	A transient forwardâ€ŧargeting element for micronemeâ€regulated secretion in <i>Toxoplasma gondii</i> . Biology of the Cell, 2008, 100, 253-264.	0.7	33
86	Non-canonical Maturation of Two Papain-family Proteases in Toxoplasma gondii. Journal of Biological Chemistry, 2013, 288, 3523-3534.	1.6	33
87	Endocytosis in different lifestyles of protozoan parasitism: role in nutrient uptake with special reference to Toxoplasma gondii. International Journal for Parasitology, 2001, 31, 1343-1353.	1.3	32
88	Plasmodium falciparum Rab5B Is an N-Terminally Myristoylated Rab GTPase That Is Targeted to the Parasite's Plasma and Food Vacuole Membranes. PLoS ONE, 2014, 9, e87695.	1.1	32
89	Evidence That Mutant PfCRT Facilitates the Transmission to Mosquitoes of Chloroquine-Treated Plasmodium Gametocytes. Journal of Infectious Diseases, 2011, 203, 228-236.	1.9	31
90	Deficiency of a Niemann-Pick, Type C1-related Protein in Toxoplasma Is Associated with Multiple Lipidoses and Increased Pathogenicity. PLoS Pathogens, 2011, 7, e1002410.	2.1	30

#	Article	IF	CITATIONS
91	How Toxoplasma and malaria parasites defy first, then exploit host autophagic and endocytic pathways for growth. Current Opinion in Microbiology, 2017, 40, 32-39.	2.3	30
92	The Modular Circuitry of Apicomplexan Cell Division Plasticity. Frontiers in Cellular and Infection Microbiology, 2021, 11, 670049.	1.8	29
93	Aberrant Sporogonic Development of Dmc1 (a Meiotic Recombinase) Deficient Plasmodium berghei Parasites. PLoS ONE, 2012, 7, e52480.	1.1	28
94	A Glycosylphosphatidylinositol-Anchored Carbonic Anhydrase-Related Protein of Toxoplasma gondii Is Important for Rhoptry Biogenesis and Virulence. MSphere, 2017, 2, .	1.3	28
95	Hostile intruder: Toxoplasma holds host organelles captive. PLoS Pathogens, 2018, 14, e1006893.	2.1	28
96	The Mevalonate Pathway in Parasitic Protozoa and Helminths. Experimental Parasitology, 1996, 82, 76-85.	0.5	27
97	Identification and Characterization of Cryptosporidium parvum Clec, a Novel C-Type Lectin Domain-Containing Mucin-Like Glycoprotein. Infection and Immunity, 2013, 81, 3356-3365.	1.0	27
98	Overexpression of Plasmodium berghei ATG8 by Liver Forms Leads to Cumulative Defects in Organelle Dynamics and to Generation of Noninfectious Merozoites. MBio, 2016, 7, .	1.8	27
99	Toxoplasma TgATG9 is critical for autophagy and long-term persistence in tissue cysts. ELife, 2021, 10, .	2.8	26
100	New host nuclear functions are not required for the modifications of the parasitophorous vacuole of Toxoplasma. Cellular Microbiology, 2007, 10, 071028185148001-???.	1.1	25
101	Conditional Mutagenesis of a Novel Choline Kinase Demonstrates Plasticity of Phosphatidylcholine Biogenesis and Gene Expression in Toxoplasma gondii. Journal of Biological Chemistry, 2012, 287, 16289-16299.	1.6	25
102	Role of an Ancestral D-Bifunctional Protein Containing Two Sterol-Carrier Protein-2 Domains in Lipid Uptake and Trafficking in <i>Toxoplasma</i> . Molecular Biology of the Cell, 2009, 20, 658-672.	0.9	24
103	Metamorphoses of malaria: the role of autophagy in parasite differentiation. Essays in Biochemistry, 2011, 51, 127-136.	2.1	24
104	A Molecular Docking Strategy Identifies Eosin B as a Non-active Site Inhibitor of Protozoal Bifunctional Thymidylate Synthase-Dihydrofolate Reductase. Journal of Biological Chemistry, 2003, 278, 14092-14100.	1.6	22
105	Production of Neisseria meningitidisTransferrin-Binding Protein B by RecombinantBordetella pertussis. Infection and Immunity, 2001, 69, 5440-5446.	1.0	20
106	Plasmodium falciparum-Derived Uric Acid Precipitates Induce Maturation of Dendritic Cells. PLoS ONE, 2013, 8, e55584.	1.1	19
107	AAH2 gene is not required for dopamine-dependent neurochemical and behavioral abnormalities produced by Toxoplasma infection in mouse. Behavioural Brain Research, 2018, 347, 193-200.	1.2	19
108	Role of <i>Toxoplasma gondii</i> Chloroquine Resistance Transporter in Bradyzoite Viability and Digestive Vacuole Maintenance. MBio, 2019, 10, .	1.8	19

#	Article	IF	CITATIONS
109	A plastid two-pore channel essential for inter-organelle communication and growth of Toxoplasma gondii. Nature Communications, 2021, 12, 5802.	5.8	19
110	Fierce Competition between Toxoplasma and Chlamydia for Host Cell Structures in Dually Infected Cells. Eukaryotic Cell, 2013, 12, 265-277.	3.4	18
111	Lipids Affect the Cryptococcus neoformans-Macrophage Interaction and Promote Nonlytic Exocytosis. Infection and Immunity, 2017, 85, .	1.0	17
112	Molecular dissection and expression of the LdK39 kinesin in the human pathogen, Leishmania donovani. Molecular Microbiology, 2007, 63, 962-979.	1.2	16
113	Modelling Toxoplasma gondii infection in a 3D cell culture system In Vitro: Comparison with infection in 2D cell monolayers. PLoS ONE, 2018, 13, e0208558.	1.1	16
114	TgTKL1 Is a Unique Plant-Like Nuclear Kinase That Plays an Essential Role in Acute Toxoplasmosis. MBio, 2018, 9, .	1.8	15
115	The Plasmodium PHIST and RESA-Like Protein Families of Human and Rodent Malaria Parasites. PLoS ONE, 2016, 11, e0152510.	1.1	15
116	Identification of a specific epitope on the extracellular domain of the LDL-receptor of Trypanosoma brucei brucei. Molecular and Biochemical Parasitology, 1994, 63, 193-202.	0.5	14
117	Aquaglyceroporin PbAQP is required for efficient progression through the liver stage of Plasmodium infection. Scientific Reports, 2018, 8, 655.	1.6	14
118	Dense Granule Protein GRA64 Interacts with Host Cell ESCRT Proteins during <i>Toxoplasma gondii</i> Infection. MBio, 2022, 13, .	1.8	14
119	A novel co-infection model withToxoplasmaandChlamydia trachomatishighlights the importance of host cell manipulation for nutrient scavenging. Cellular Microbiology, 2013, 15, 619-646.	1.1	13
120	Identification and Localization of the First Known Proteins of the Trypanosoma cruzi Cytostome Cytopharynx Endocytic Complex. Frontiers in Cellular and Infection Microbiology, 2019, 9, 445.	1.8	12
121	An update on the rapid advances in malaria parasite cell biology. Trends in Parasitology, 2010, 26, 305-310.	1.5	10
122	Dynamics of the Major Histocompatibility Complex Class I Processing and Presentation Pathway in the Course of Malaria Parasite Development in Human Hepatocytes: Implications for Vaccine Development. PLoS ONE, 2013, 8, e75321.	1.1	10
123	Toxoplasma gondii's Basal Complex: The Other Apicomplexan Business End Is Multifunctional. Frontiers in Cellular and Infection Microbiology, 2022, 12, 882166.	1.8	10
124	Phosphoregulation accommodates Type III secretion and assembly of a tether of ER-Chlamydia inclusion membrane contact sites. ELife, 0, 11, .	2.8	10
125	Introduction of Caveolae Structural Proteins into the Protozoan Toxoplasma Results in the Formation of Heterologous Caveolae but Not Caveolar Endocytosis. PLoS ONE, 2012, 7, e51773.	1.1	9
126	Parasite–host cell interactions in toxoplasmosis: new avenues for intervention?. Expert Reviews in Molecular Medicine, 2001, 3, 1-20.	1.6	8

#	Article	IF	CITATIONS
127	A single Na+-Pi cotransporter in Toxoplasma plays key roles in phosphate import and control of parasite osmoregulation. PLoS Pathogens, 2020, 16, e1009067.	2.1	8
128	A <i>Plasmodium</i> homolog of ER tubuleâ€forming proteins is required for parasite virulence. Molecular Microbiology, 2020, 114, 454-467.	1.2	7
129	Sitting in the driver's seat: Manipulation of mammalian cell Rab GTPase functions by apicomplexan parasites. Biology of the Cell, 2020, 112, 187-195.	0.7	6
130	Quantitative Fluorescence Microscopy for Detecting Rab within the Parasitophorous of the Human Pathogen. Methods in Molecular Biology, 2021, 2293, 295-305.	0.4	6
131	The Rab11-family interacting proteins reveal selective interaction of mammalian recycling endosomes with the <i>Toxoplasma</i> parasitophorous vacuole in a Rab11- and Arf6-dependent manner. Molecular Biology of the Cell, 2022, 33, mbcE21060284.	0.9	6
132	Studying Membrane Trafficking in Toxoplasma gondii Using Correlative Light and Electron Microscopy (CLEM). Microscopy and Microanalysis, 2015, 21, 535-536.	0.2	5
133	Toxoplasma, or the discovery of a heterophage. Trends in Parasitology, 2014, 30, 467-469.	1.5	4
134	Biochemistry and Metabolism ofÂToxoplasma gondii. , 2014, , 257-295.		3
135	Chemoprophylaxis vaccination with a Plasmodium liver stage autophagy mutant affords enhanced and long-lasting protection. Npj Vaccines, 2021, 6, 98.	2.9	3
136	Robbing Host Phosphatidic Acid to Survive: A Strategy of a Fly Parasite. Trends in Parasitology, 2019, 35, 336-338.	1.5	1
137	Biochemistry and metabolism of Toxoplasma gondii: lipid synthesis and uptake. , 2020, , 367-395.		1
138	Unusual features and localization of the membrane kinome of Trypanosoma brucei. PLoS ONE, 2021, 16, e0258814.	1.1	1
139	Title is missing!. , 2020, 16, e1009067.		0
140	Title is missing!. , 2020, 16, e1009067.		0
141	Title is missing!. , 2020, 16, e1009067.		0
142	Title is missing!. , 2020, 16, e1009067.		0
143	Title is missing!. , 2020, 16, e1009067.		0
144	Title is missing!. , 2020, 16, e1009067.		0

9