List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2625596/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                         | lF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Effect of Specimen Thickness on Threshold Stress Intensity Factor ( <i>K IH</i> ) Associated with DHC in Zr-2.5 Nb Alloy Pressure Tube Material. Materials Performance and Characterization, 2022, 11, 301-314. | 0.2 | 0         |
| 2  | Combined effect of residual and mean stresses on fatigue behavior of welded aluminum 2024 alloy.<br>International Journal of Fatigue, 2022, 155, 106565.                                                        | 2.8 | 17        |
| 3  | A localizing gradient plasticity model for ductile fracture. Computer Methods in Applied Mechanics<br>and Engineering, 2022, 388, 114205.                                                                       | 3.4 | 13        |
| 4  | Electro-Elastic Analysis of Edge Dislocation Dipole in GaN Using XFEM. Lecture Notes in Mechanical Engineering, 2022, , 141-151.                                                                                | 0.3 | 0         |
| 5  | Low Cycle Fatigue Analysis of High-Strength Aluminum Alloy 2024. Lecture Notes in Mechanical<br>Engineering, 2022, , 211-223.                                                                                   | 0.3 | 0         |
| 6  | A new framework based on XFEM to study the role of electrostatic tractions in semipermeable piezoelectric material. Engineering Fracture Mechanics, 2022, 266, 108398.                                          | 2.0 | 12        |
| 7  | A computational framework based on FEA, ML and GA for estimation of welding residual stresses.<br>Finite Elements in Analysis and Design, 2022, 205, 103753.                                                    | 1.7 | 7         |
| 8  | Nonlinear thermo-elastic analysis of edge dislocations with Internal Heat Generation in Semiconductor Materials. Mechanics of Materials, 2022, 169, 104322.                                                     | 1.7 | 9         |
| 9  | A Microstructure Based Elasto-Plastic Polygonal FEM and CDM Approach to Evaluate LCF Life in Titanium Alloys. International Journal of Mechanical Sciences, 2022, 225, 107356.                                  | 3.6 | 8         |
| 10 | A simple and efficient implementation of localizing gradient damage method in COMSOL for fracture simulation. Engineering Fracture Mechanics, 2022, 269, 108552.                                                | 2.0 | 13        |
| 11 | Thermo-elastic analysis of edge dislocation using extended finite element method. International<br>Journal of Mechanical Sciences, 2021, 192, 106109.                                                           | 3.6 | 13        |
| 12 | A Strain-based continuum damage model for low cycle fatigue under different strain ratios.<br>Engineering Fracture Mechanics, 2021, 242, 107479.                                                                | 2.0 | 17        |
| 13 | Extended isogeometric analysis for fracture in functionally graded magneto-electro-elastic material.<br>Engineering Fracture Mechanics, 2021, 247, 107640.                                                      | 2.0 | 38        |
| 14 | A non-intrusive stochastic phase field method for crack propagation in functionally graded materials.<br>Acta Mechanica, 2021, 232, 2555-2574.                                                                  | 1.1 | 18        |
| 15 | Analysis of indentation size effect (ISE) in nanoindentation hardness in polycrystalline PMN-PT piezoceramics with different domain configurations. Ceramics International, 2021, 47, 11870-11877.              | 2.3 | 34        |
| 16 | A Three-Coil Setup for Controlled Divergence in Magnetic Nozzle. IEEE Transactions on Plasma<br>Science, 2021, 49, 2227-2237.                                                                                   | 0.6 | 17        |
| 17 | A new framework based on XFEM for cracked semipermeable piezoelectric material. Engineering<br>Fracture Mechanics, 2021, 253, 107874.                                                                           | 2.0 | 21        |
| 18 | A simplified continuous–discontinuous approach to fracture based on decoupled localizing gradient damage method. Computer Methods in Applied Mechanics and Engineering, 2021, 383, 113893.                      | 3.4 | 18        |

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A polygonal FEM and continuum damage mechanics based framework for stochastic simulation of fatigue life scatter in duplex microstructure titanium alloys. Mechanics of Materials, 2021, 163, 104071.                                                             | 1.7 | 14        |
| 20 | Modelling of fracture in pressure vessels by thin shell isogeometric analysis. International Journal of Hydromechatronics, 2021, 4, 155.                                                                                                                          | 1.0 | 5         |
| 21 | Complete Creep Life Prediction Using Continuum Damage Mechanics and XFEM. Lecture Notes in Mechanical Engineering, 2021, , 169-176.                                                                                                                               | 0.3 | 2         |
| 22 | Numerical Study of Coupled Elasto-Plastic Hydrogen Diffusion at Crack Tip Using XFEM. Lecture Notes<br>in Mechanical Engineering, 2021, , 177-186.                                                                                                                | 0.3 | 2         |
| 23 | Improvement on High-Temperature Mechanical Properties of Modified 9Cr-1Mo Steel Through<br>Intermediate Hot Rolling. Lecture Notes in Mechanical Engineering, 2020, , 129-139.                                                                                    | 0.3 | 0         |
| 24 | Mixed-Mode Creep Crack Growth Simulations Using Continuum Damage Mechanics and Virtual Node<br>XFEM. Lecture Notes in Mechanical Engineering, 2020, , 275-284.                                                                                                    | 0.3 | 3         |
| 25 | A stress triaxiality based modified Liu–Murakami creep damage model for creep crack growth life prediction in different specimens. International Journal of Fracture, 2020, 221, 101-121.                                                                         | 1.1 | 12        |
| 26 | Numerical investigation of creep crack growth in plastically graded materials using C(t) and XFEM.<br>Engineering Fracture Mechanics, 2020, 226, 106820.                                                                                                          | 2.0 | 25        |
| 27 | Adaptive mesh refinement schemes for the localizing gradient damage method based on<br>biquadratic-bilinear coupled-field elements. Engineering Fracture Mechanics, 2020, 223, 106790.                                                                            | 2.0 | 14        |
| 28 | An improved methodology based on continuum damage mechanics and stress triaxiality to capture the constraint effect during fatigue crack propagation. International Journal of Fatigue, 2020, 140, 105823.                                                        | 2.8 | 21        |
| 29 | A Thermo-mechanical gradient enhanced damage method for fracture. Computational Mechanics, 2020,<br>66, 1399-1426.                                                                                                                                                | 2.2 | 23        |
| 30 | Effect of double austenitization treatment on fatigue crack growth and high cycle fatigue behavior<br>of modified 9Cr–1Mo steel. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2020, 788, 139495.        | 2.6 | 10        |
| 31 | Effect of Thermo-mechanical Treatment on High Temperature Tensile Properties and Ductile–Brittle<br>Transition Behavior of Modified 9Cr-1Mo Steel. Metallurgical and Materials Transactions A: Physical<br>Metallurgy and Materials Science, 2020, 51, 3869-3885. | 1.1 | 8         |
| 32 | Failure analysis of orthotropic composite material under thermo-elastic loading by XFEA. Materials<br>Today: Proceedings, 2020, 26, 2163-2167.                                                                                                                    | 0.9 | 5         |
| 33 | Effect of post-weld heat treatment on mechanical properties and fatigue crack growth rate in welded<br>AA-2024. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2020, 779, 139116.                         | 2.6 | 43        |
| 34 | Analysis of cracked functionally graded piezoelectric material using XIGA. Engineering Fracture<br>Mechanics, 2020, 230, 107015.                                                                                                                                  | 2.0 | 24        |
| 35 | Buckling and vibrations of FGM circular plates in thermal environment. Procedia Structural Integrity, 2019, 14, 362-374.                                                                                                                                          | 0.3 | 19        |
| 36 | Source codes and simulation data for the finite element implementation of the conventional and localizing gradient damage methods in ABAQUS. Data in Brief, 2019, 26, 104533.                                                                                     | 0.5 | 15        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A Numerical Study of Creep Crack Growth in an Aero-engine Turbine Disc using XFEM. Procedia<br>Structural Integrity, 2019, 14, 839-848.                                                                                                      | 0.3 | 6         |
| 38 | Analysis of cracked functionally graded material plates using XIGA based on generalized higher-order shear deformation theory. Composite Structures, 2019, 225, 111038.                                                                      | 3.1 | 28        |
| 39 | Fatigue crack growth simulations of plastically graded materials using XFEM and J-integral decomposition approach. Engineering Fracture Mechanics, 2019, 216, 106470.                                                                        | 2.0 | 32        |
| 40 | A comparative study and ABAQUS implementation of conventional and localizing gradient enhanced damage models. Finite Elements in Analysis and Design, 2019, 160, 1-31.                                                                       | 1.7 | 53        |
| 41 | A multiscale framework based on phase field method and XFEM to simulate fracture in highly heterogeneous materials. Theoretical and Applied Fracture Mechanics, 2019, 100, 390-415.                                                          | 2.1 | 45        |
| 42 | A simple and robust computational homogenization approach for heterogeneous particulate composites. Computer Methods in Applied Mechanics and Engineering, 2019, 349, 45-90.                                                                 | 3.4 | 16        |
| 43 | A parallel and efficient multi-split XFEM for 3-D analysis of heterogeneous materials. Computer<br>Methods in Applied Mechanics and Engineering, 2019, 347, 365-401.                                                                         | 3.4 | 29        |
| 44 | A new framework based on continuum damage mechanics and XFEM for high cycle fatigue crack growth simulations. Engineering Fracture Mechanics, 2019, 206, 172-200.                                                                            | 2.0 | 59        |
| 45 | Creep crack simulations using continuum damage mechanics and extended finite element method.<br>International Journal of Damage Mechanics, 2019, 28, 3-34.                                                                                   | 2.4 | 45        |
| 46 | A homogenized multigrid XFEM to predict the crack growth behavior of ductile material in the presence of microstructural defects. Engineering Fracture Mechanics, 2019, 205, 577-602.                                                        | 2.0 | 25        |
| 47 | Role of shear localization in nanocrystallisation of zircaloy-2 processed by wire rolling at cryo<br>temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure<br>and Processing, 2018, 718, 111-122. | 2.6 | 2         |
| 48 | Analysis of cracked plate using higher-order shear deformation theory: Asymptotic crack-tip fields<br>and XIGA implementation. Computer Methods in Applied Mechanics and Engineering, 2018, 336, 594-639.                                    | 3.4 | 39        |
| 49 | An adaptive multiscale phase field method for brittle fracture. Computer Methods in Applied<br>Mechanics and Engineering, 2018, 329, 254-288.                                                                                                | 3.4 | 110       |
| 50 | Fatigue Crack Growth Analysis of an Interfacial Crack in Heterogonous Material Using XIGA.<br>Mathematics for Industry, 2018, , 15-26.                                                                                                       | 0.4 | 1         |
| 51 | A Bézier extraction based XIGA approach for three-dimensional crack simulations. Advances in<br>Engineering Software, 2018, 125, 55-93.                                                                                                      | 1.8 | 35        |
| 52 | Influence of intermediate rolling on mechanical behavior of modified 9Cr-1Mo steel. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 738,<br>135-152.                            | 2.6 | 14        |
| 53 | A new multiscale phase field method to simulate failure in composites. Advances in Engineering<br>Software, 2018, 126, 9-33.                                                                                                                 | 1.8 | 53        |
| 54 | Effect of Tempering and Rolling on Fatigue Crack Growth Behavior of Modified 9Cr-1Mo Steel. Journal of Materials Engineering and Performance, 2018, 27, 5898-5912.                                                                           | 1.2 | 7         |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A local moving extended phase field method (LMXPFM) for failure analysis of brittle materials.<br>Computer Methods in Applied Mechanics and Engineering, 2018, 342, 674-709.                                                               | 3.4 | 38        |
| 56 | Mixed mode crack growth in elasto-plastic-creeping solids using XFEM. Engineering Fracture<br>Mechanics, 2018, 199, 489-517.                                                                                                               | 2.0 | 39        |
| 57 | Experimental and numerical studies to estimate fatigue crack growth behavior of Ni-based super alloy.<br>Theoretical and Applied Fracture Mechanics, 2018, 96, 604-616.                                                                    | 2.1 | 29        |
| 58 | Experimental and XFEM Simulation of Tensile and Fracture Behavior of Al 6061 Alloy Processed by Severe Plastic Deformation. Metallography, Microstructure, and Analysis, 2017, 6, 55-72.                                                   | 0.5 | 4         |
| 59 | A simple, efficient and accurate Bézier extraction based T-spline XIGA for crack simulations.<br>Theoretical and Applied Fracture Mechanics, 2017, 88, 74-96.                                                                              | 2.1 | 72        |
| 60 | A new multiscale XFEM for the elastic properties evaluation of heterogeneous materials.<br>International Journal of Mechanical Sciences, 2017, 122, 277-287.                                                                               | 3.6 | 75        |
| 61 | A stochastic XFEM model for the tensile strength prediction of heterogeneous graphite based on microstructural observations. Journal of Nuclear Materials, 2017, 487, 143-157.                                                             | 1.3 | 24        |
| 62 | A new cohesive crack tip symplectic analytical singular element involving plastic zone length for<br>fatigue crack growth prediction under variable amplitude cyclic loading. European Journal of<br>Mechanics, A/Solids, 2017, 65, 79-90. | 2.1 | 44        |
| 63 | Numerical Prediction of Indentation Behavior of Metal Matrix Composites Using XFEM. Procedia Engineering, 2017, 173, 1071-1078.                                                                                                            | 1.2 | 1         |
| 64 | Nonlinear Fatigue Crack Growth Simulations using J -integral Decomposition and XFEM. Procedia Engineering, 2017, 173, 1209-1214.                                                                                                           | 1.2 | 22        |
| 65 | A numerical prediction of flexural strength probability for NBG-18 nuclear grade graphite using strength pair model. Journal of Strain Analysis for Engineering Design, 2017, 52, 204-211.                                                 | 1.0 | 3         |
| 66 | A two-scale stochastic framework for predicting failure strength probability of heterogeneous materials. Composite Structures, 2017, 179, 294-325.                                                                                         | 3.1 | 16        |
| 67 | Heterogeneous and homogenized models for predicting the indentation response of particle<br>reinforced metal matrix composites. International Journal of Mechanics and Materials in Design, 2017,<br>13, 531-552.                          | 1.7 | 14        |
| 68 | Numerical Simulation of 3D Thermo-Elastic Fatigue Crack Growth Problems Using Coupled FE-EFG Approach. Journal of the Institution of Engineers (India): Series C, 2017, 98, 295-312.                                                       | 0.7 | 9         |
| 69 | Ductile failure modeling and simulations using coupled FE–EFG approach. International Journal of<br>Fracture, 2017, 203, 183-209.                                                                                                          | 1.1 | 24        |
| 70 | Modeling and Simulation of 3-D Interfacial Cracks by XFEM. , 2017, , .                                                                                                                                                                     |     | 1         |
| 71 | Simulation of 3-D Cracks under Thermo-Mechanical Environment. Materials Today: Proceedings, 2017,<br>4, 10259-10263.                                                                                                                       | 0.9 | 3         |
| 72 | Fatigue crack growth analysis of an interfacial crack in heterogeneous materials using homogenized XIGA. Theoretical and Applied Fracture Mechanics, 2016, 85, 294-319.                                                                    | 2.1 | 54        |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Three-dimensional quasi-static interfacial crack growth simulations in thermo-mechanical<br>environment by coupled FE-EFG approach. Theoretical and Applied Fracture Mechanics, 2016, 86, 267-283.       | 2.1 | 26        |
| 74 | Enhanced nodal gradient 3D consecutive-interpolation tetrahedral element (CTH4) for heat transfer analysis. International Journal of Heat and Mass Transfer, 2016, 103, 14-27.                           | 2.5 | 42        |
| 75 | Exact continuum interpolation of the linear chain with hyper-pre-stress. International Journal of Fracture, 2016, 202, 237-244.                                                                          | 1.1 | 1         |
| 76 | A Modified Theta Projection Model for Creep Behavior of Metals and Alloys. Journal of Materials<br>Engineering and Performance, 2016, 25, 3985-3992.                                                     | 1.2 | 12        |
| 77 | Evaluating Fracture Toughness of Rolled Zircaloy-2 at Different Temperatures Using XFEM. Journal of Materials Engineering and Performance, 2016, 25, 4046-4058.                                          | 1.2 | 10        |
| 78 | A coupled FE–EFG approach for modelling crack growth in ductile materials. Fatigue and Fracture of<br>Engineering Materials and Structures, 2016, 39, 1204-1225.                                         | 1.7 | 25        |
| 79 | Evaluation of mechanical properties using spherical ball indentation and coupled finite<br>element–element-free galerkin approach. Mechanics of Advanced Materials and Structures, 2016, 23,<br>832-843. | 1.5 | 19        |
| 80 | Material property evaluation of particle reinforced composites using finite element approach. Journal of Composite Materials, 2016, 50, 2757-2771.                                                       | 1.2 | 22        |
| 81 | Numerical simulations of cracked plate using XIGA under different loads and boundary conditions.<br>Mechanics of Advanced Materials and Structures, 2016, 23, 704-714.                                   | 1.5 | 31        |
| 82 | New enrichments in XFEM to model dynamic crack response of 2-D elastic solids. International Journal of Impact Engineering, 2016, 87, 198-211.                                                           | 2.4 | 66        |
| 83 | Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different loads and boundary conditions. Composite Structures, 2015, 126, 347-359.                               | 3.1 | 135       |
| 84 | Fatigue crack growth simulations of 3-D linear elastic cracks under thermal load by XFEM. Frontiers of Structural and Civil Engineering, 2015, 9, 359-382.                                               | 1.2 | 39        |
| 85 | Elasto-plastic fatigue crack growth analysis of plane problems in the presence of flaws using XFEM.<br>Frontiers of Structural and Civil Engineering, 2015, 9, 420-440.                                  | 1.2 | 26        |
| 86 | A homogenized XFEM approach to simulate fatigue crack growth problems. Computers and Structures, 2015, 150, 1-22.                                                                                        | 2.4 | 78        |
| 87 | Texture and Mechanical Behavior of Zircaloy-2 Rolled at Different Temperatures. Journal of Materials<br>Engineering and Performance, 2015, 24, 618-625.                                                  | 1.2 | 7         |
| 88 | A new criterion for modeling multiple discontinuities passing through an element using XIGA. Journal of Mechanical Science and Technology, 2015, 29, 1131-1143.                                          | 0.7 | 32        |
| 89 | Texture Evolution and Ultrafine Grain Formation in Cross-Cryo-Rolled Zircaloy-2. Acta Metallurgica<br>Sinica (English Letters), 2015, 28, 837-846.                                                       | 1.5 | 22        |
| 90 | Elasto-Plastic Finite Deformation Simulations using 3-D Parallel XFEM. Materials Today: Proceedings, 2015, 2, 2030-2036.                                                                                 | 0.9 | 1         |

| #   | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Three-dimensional stochastic quasi-static fatigue crack growth simulations using coupled FE-EFG approach. Computers and Structures, 2015, 160, 1-19.                                                                                             | 2.4 | 31        |
| 92  | Fatigue crack growth in functionally graded material using homogenized XIGA. Composite Structures, 2015, 134, 269-284.                                                                                                                           | 3.1 | 34        |
| 93  | Fatigue crack growth analysis of a homogeneous plate in the presence of multiple defects using<br>extended isogeometric analysis. Journal of the Brazilian Society of Mechanical Sciences and<br>Engineering, 2015, 37, 1065-1082.               | 0.8 | 23        |
| 94  | Development of Ultrafine Grained Zircaloy-2 by Room Temperature Cross Rolling. Journal of Materials<br>Engineering and Performance, 2015, 24, 609-617.                                                                                           | 1.2 | 1         |
| 95  | Modeling and simulation of kinked cracks by virtual node XFEM. Computer Methods in Applied<br>Mechanics and Engineering, 2015, 283, 1425-1466.                                                                                                   | 3.4 | 70        |
| 96  | Stochastic fatigue crack growth simulation of interfacial crack in bi-layered FGMs using XIGA.<br>Computer Methods in Applied Mechanics and Engineering, 2015, 284, 186-229.                                                                     | 3.4 | 86        |
| 97  | Simulation of Bi-metallic Interfacial Cracks Using Element Free Galerkin Method. Procedia<br>Engineering, 2014, 86, 685-692.                                                                                                                     | 1.2 | 6         |
| 98  | Simulation of 3-D Thermo-elastic Fracture Problems Using Coupled FE-EFG Approach. , 2014, 6, 1927-1935.                                                                                                                                          |     | 4         |
| 99  | Experimental Investigation of Fatigue Behavior of CR and RTR 6082 Al-alloy. , 2014, 6, 1919-1926.                                                                                                                                                |     | 6         |
| 100 | XFEM for the evaluation of elastic properties of CNT-based 3-D full five-directional braided composites. Advanced Composite Materials, 2014, 23, 351-373.                                                                                        | 1.0 | 5         |
| 101 | Numerical Modeling of Part-through Cracks in Pipe and Pipe Bend Using XFEM. , 2014, 6, 72-79.                                                                                                                                                    |     | 11        |
| 102 | A multigrid coupled (FE-EFG) approach to simulate fatigue crack growth in heterogeneous materials.<br>Theoretical and Applied Fracture Mechanics, 2014, 72, 121-135.                                                                             | 2.1 | 31        |
| 103 | A coupled finite element and element-free Galerkin approach for the simulation of stable crack growth in ductile materials. Theoretical and Applied Fracture Mechanics, 2014, 70, 49-58.                                                         | 2.1 | 30        |
| 104 | Mechanical behaviour and microstructural characterizations of ultrafine grained Zircaloy-2<br>processed by cryorolling. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2014, 603, 23-29. | 2.6 | 28        |
| 105 | XFEM simulation of stable crack growth using J–R curve under finite strain plasticity. International Journal of Mechanics and Materials in Design, 2014, 10, 165-177.                                                                            | 1.7 | 35        |
| 106 | Fatigue life simulation of functionally graded materials under cyclic thermal load using XFEM.<br>International Journal of Mechanical Sciences, 2014, 82, 41-59.                                                                                 | 3.6 | 26        |
| 107 | Numerical Simulations of 3-D Cracks Using Coupled EFGM and FEM. International Journal for Computational Methods in Engineering Science and Mechanics, 2014, 15, 227-231.                                                                         | 1.4 | 7         |
| 108 | Fatigue crack growth simulations of homogeneous and bi-material interfacial cracks using element free Galerkin method. Applied Mathematical Modelling, 2014, 38, 3093-3123.                                                                      | 2.2 | 46        |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Improved Fracture Toughness of Cryorolled and Room Temperature Rolled 6082 Al Alloys. Acta<br>Metallurgica Sinica (English Letters), 2014, 27, 359-367.                                                                 | 1.5 | 20        |
| 110 | Mechanical and microstructural characterizations of ultrafine grained Zircaloy-2 produced by room temperature rolling. Materials & Design, 2014, 55, 612-618.                                                           | 5.1 | 21        |
| 111 | Experimental evaluation of mechanical properties and fracture-fatigue simulation of cryo- and<br>room-temperature-rolled zircaloy-2. International Journal of Microstructure and Materials<br>Properties, 2014, 9, 120. | 0.1 | 1         |
| 112 | Nonlinear Fatigue Crack Growth Analysis of a Center Crack Plate by XFEM. International Journal of Advanced Materials Manufacturing and Characterization, 2014, 4, 11-16.                                                | 0.2 | 8         |
| 113 | Fatigue-life estimation of functionally graded materials using XFEM. Engineering With Computers, 2013, 29, 427-448.                                                                                                     | 3.5 | 21        |
| 114 | Fatigue crack growth simulations of 3-D problems using XFEM. International Journal of Mechanical Sciences, 2013, 76, 112-131.                                                                                           | 3.6 | 86        |
| 115 | Fatigue crack growth simulations of bi-material interfacial cracks under thermo-elastic loading by extended finite element method. European Journal of Computational Mechanics, 2013, 22, 79-104.                       | 0.6 | 27        |
| 116 | Nonlinear Simulation of an Embedded Crack in the Presence of Holes and Inclusions by XFEM. Procedia Engineering, 2013, 64, 642-651.                                                                                     | 1.2 | 24        |
| 117 | Numerical Investigation of Stable Crack Growth in Ductile Materials Using XFEM. Procedia<br>Engineering, 2013, 64, 652-660.                                                                                             | 1.2 | 8         |
| 118 | A novel enrichment criterion for modeling kinked cracks using element free Galerkin method.<br>International Journal of Mechanical Sciences, 2013, 68, 140-149.                                                         | 3.6 | 29        |
| 119 | Numerical Simulation of Plane Crack Problems Using Extended Isogeometric Analysis. Procedia<br>Engineering, 2013, 64, 661-670.                                                                                          | 1.2 | 19        |
| 120 | Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM. Computational Mechanics, 2013, 52, 799-814.                                                                                       | 2.2 | 100       |
| 121 | A simple and efficient XFEM approach for 3-D cracks simulations. International Journal of Fracture, 2013, 181, 189-208.                                                                                                 | 1.1 | 51        |
| 122 | Numerical prediction of elasto-plastic behaviour of interpenetrating phase composites by EFGM.<br>Composites Part B: Engineering, 2013, 51, 327-336.                                                                    | 5.9 | 22        |
| 123 | Mixed-mode fatigue crack growth analysis of functionally graded materials by XFEM. International<br>Journal of Fracture, 2013, 183, 81-97.                                                                              | 1.1 | 24        |
| 124 | Evaluation of elastic properties of interpenetrating phase composites by mesh-free method. Journal of Composite Materials, 2013, 47, 1407-1423.                                                                         | 1.2 | 22        |
| 125 | The Effect of Inhomogeneities on an Edge Crack: A Numerical Study using XFEM. International Journal for Computational Methods in Engineering Science and Mechanics, 2013, 14, 505-523.                                  | 1.4 | 12        |
| 126 | Numerical Simulation of Large Deformation Problems by Element Free Galerkin Method. Key<br>Engineering Materials, 2013, 535-536, 85-88.                                                                                 | 0.4 | 2         |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Recent Advances in Computational Mechanics. Advances in Mechanical Engineering, 2013, 5, 158572.                                                                                                         | 0.8 | Ο         |
| 128 | Experimental Finding Of Initiation Fracture Toughness And FEM Simulation Of Fracture Behaviour Of<br>UFG 7075 Al Alloy. Advanced Materials Letters, 2013, 4, 668-681.                                    | 0.3 | 2         |
| 129 | PARAMETER AND INTERACTION STUDY OF EDGE CRACK PROBLEM USING MESHFREE METHOD. International Journal of Modeling, Simulation, and Scientific Computing, 2012, 03, 1250016.                                 | 0.9 | 2         |
| 130 | Crack growth simulation of bulk and ultrafine grained 7075 Al alloy by XFEM. International Journal of<br>Materials and Product Technology, 2012, 44, 252.                                                | 0.1 | 10        |
| 131 | An Experimental Evaluation of Material Properties and Fracture Simulation of Cryorolled 7075 Al<br>Alloy. Journal of Materials Engineering and Performance, 2012, 21, 1167-1181.                         | 1.2 | 10        |
| 132 | The numerical simulation of fatigue crack growth using extended finite element method.<br>International Journal of Fatigue, 2012, 36, 109-119.                                                           | 2.8 | 204       |
| 133 | Numerical simulation of bi-material interfacial cracks using EFGM and XFEM. International Journal of Mechanics and Materials in Design, 2012, 8, 9-36.                                                   | 1.7 | 78        |
| 134 | An enrichment based new criterion for the simulation of multiple interacting cracks using element free Galerkin method. International Journal of Fracture, 2011, 167, 157-171.                           | 1.1 | 18        |
| 135 | XFEM simulation of cracks, holes and inclusions in functionally graded materials. International Journal of Mechanics and Materials in Design, 2011, 7, 199-218.                                          | 1.7 | 57        |
| 136 | Synthesis and characterization of clinopyroxene based glasses and glass-ceramics along diopside<br>(CaMgSi2O6)–jadeite (NaAlSi2O6) join. Ceramics International, 2011, 37, 741-748.                      | 2.3 | 15        |
| 137 | A numerical study of crack interactions under thermo-mechanical load using EFGM. Journal of Mechanical Science and Technology, 2011, 25, 403-413.                                                        | 0.7 | 28        |
| 138 | Evaluation of mixed mode stress intensity factors for interface cracks using EFGM. Applied<br>Mathematical Modelling, 2011, 35, 3443-3459.                                                               | 2.2 | 60        |
| 139 | Tensile and impact-toughness behaviour of cryorolled Al 7075 alloy. Materials & Design, 2011, 32, 1298-1305.                                                                                             | 5.1 | 71        |
| 140 | Fatigue behaviour and crack growth rate of cryorolled Al 7075 alloy. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7124-7132.        | 2.6 | 45        |
| 141 | AN EFFICIENT PARTIAL DOMAIN ENRICHED ELEMENT-FREE GALERKIN METHOD CRITERION FOR CRACKS IN NONCONVEX DOMAINS. International Journal of Modeling, Simulation, and Scientific Computing, 2011, 02, 317-336. | 0.9 | 4         |
| 142 | Improvement of Fracture Toughness (K <sub>1c</sub> ) of 7075 Al Alloy by Cryorolling Process.<br>Materials Science Forum, 2011, 683, 81-94.                                                              | 0.3 | 10        |
| 143 | A Numerical Study of the Effects of Packer-Induced Stresses and Stress Shadowing on Fracture Initiation and Stimulation of Horizontal Wells. , 2010, , .                                                 |     | 12        |
| 144 | A modified intrinsic enriched element free Galerkin method for multiple cracks simulation. Materials<br>& Design, 2010, 31, 628-632.                                                                     | 5.1 | 26        |

| #   | Article                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Numerical simulation of thermo-elastic fracture problems using element free Galerkin method.<br>International Journal of Mechanical Sciences, 2010, 52, 1745-1755.                                                                                                                           | 3.6 | 62        |
| 146 | Combined effect of magnetic field and heat absorption on unsteady free convection and heat transfer<br>flow in a micropolar fluid past a semi-infinite moving plate with viscous dissipation using element<br>free Galerkin method. Applied Mathematics and Computation, 2010, 217, 308-321. | 1.4 | 25        |
| 147 | Mesh-Free Solution of Two-Dimensional Edge Crack Problems under Thermo-Mechanical Load. Journal of ASTM International, 2010, 7, 1-12.                                                                                                                                                        | 0.2 | 2         |
| 148 | Element free Galerkin method for transient thermal analysis of carbon nanotube composites. Thermal Science, 2008, 12, 39-48.                                                                                                                                                                 | 0.5 | 3         |
| 149 | Evaluation of effective thermal conductivity of CNTâ€based nanoâ€composites by element free Galerkin method. International Journal of Numerical Methods for Heat and Fluid Flow, 2007, 17, 757-769.                                                                                          | 1.6 | 16        |
| 150 | Nonlinear Thermal Analysis of Carbon Nanotube Composites by Element Free Galerkin Method.<br>Numerical Heat Transfer; Part A: Applications, 2007, 51, 1087-1102.                                                                                                                             | 1.2 | 7         |
| 151 | Numerical analysis of fluid squeezed between two parallel plates by meshless method. Computers and Fluids, 2007, 36, 1460-1480.                                                                                                                                                              | 1.3 | 18        |
| 152 | An axisymmetric heat conduction model for a multi-material cylindrical system with application to<br>analysis of carbon nanotube based composites. International Journal of Engineering Science, 2007, 45,<br>22-33.                                                                         | 2.7 | 2         |
| 153 | Meshless element free Galerkin method for unsteady nonlinear heat transfer problems. International<br>Journal of Heat and Mass Transfer, 2007, 50, 1212-1219.                                                                                                                                | 2.5 | 95        |
| 154 | Meshless method for nonlinear heat conduction analysis of nano-composites. Heat and Mass<br>Transfer, 2007, 43, 1097-1106.                                                                                                                                                                   | 1.2 | 9         |
| 155 | Thermal Analysis of CNT-Based Nano-Composites by Element Free Galerkin Method. Computational Mechanics, 2007, 39, 719-728.                                                                                                                                                                   | 2.2 | 22        |
| 156 | Effect of interface on the thermal conductivity of carbon nanotube composites. International<br>Journal of Thermal Sciences, 2007, 46, 842-847.                                                                                                                                              | 2.6 | 76        |
| 157 | Numerical Solution of Temperature-Dependent Thermal Conductivity Problems Using a Meshless<br>Method. Numerical Heat Transfer; Part A: Applications, 2006, 50, 125-145.                                                                                                                      | 1.2 | 43        |
| 158 | Meshless analysis of unsteady-state heat transfer in semi-infinite solid with temperature-dependent thermal conductivity. International Communications in Heat and Mass Transfer, 2006, 33, 231-239.                                                                                         | 2.9 | 23        |
| 159 | Heat transfer analysis of composite slabs using meshless element Free Galerkin method.<br>Computational Mechanics, 2006, 38, 521-532.                                                                                                                                                        | 2.2 | 25        |
| 160 | Thermal solution of cylindrical composite systems using meshless method. Heat and Mass Transfer, 2006, 42, 689-707.                                                                                                                                                                          | 1.2 | 4         |
| 161 | Parallel EFG algorithm for heat transfer problems. Advances in Engineering Software, 2005, 36, 554-560.                                                                                                                                                                                      | 1.8 | 20        |
| 162 | A Numerical Study of Weight Functions, Scaling, and Penalty Parameters for Heat Transfer<br>Applications. Numerical Heat Transfer; Part A: Applications, 2005, 47, 1025-1053.                                                                                                                | 1.2 | 17        |

| #   | Article                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Parallel Meshless EFG Solution for Fluid Flow Problems. Numerical Heat Transfer, Part B:<br>Fundamentals, 2005, 48, 45-66.                                                           | 0.6 | 11        |
| 164 | Parallel implementation of the EFG Method for heat transfer and fluid flow problems. Computational Mechanics, 2004, 34, 453-463.                                                     | 2.2 | 16        |
| 165 | Application of meshless EFG method in fluid flow problems. Sadhana - Academy Proceedings in Engineering Sciences, 2004, 29, 285-296.                                                 | 0.8 | 2         |
| 166 | A numerical solution of composite heat transfer problems using meshless method. International<br>Journal of Heat and Mass Transfer, 2004, 47, 2123-2138.                             | 2.5 | 78        |
| 167 | MESHLESS EFG METHOD IN THREE-DIMENSIONAL HEAT TRANSFER PROBLEMS: A NUMERICAL COMPARISON, COST AND ERROR ANALYSIS. Numerical Heat Transfer; Part A: Applications, 2004, 46, 199-220.  | 1.2 | 44        |
| 168 | HEAT TRANSFER ANALYSIS OF TWO-DIMENSIONAL FINS USING MESHLESS ELEMENT FREE GALERKIN METHOD.<br>Numerical Heat Transfer; Part A: Applications, 2003, 44, 73-84.                       | 1.2 | 71        |
| 169 | THE ELEMENT FREE GALERKIN METHOD IN THREE DIMENSIONAL STEADY STATE HEAT CONDUCTION.<br>International Journal of Computational Engineering Science, 2002, 03, 291-303.                | 0.1 | 33        |
| 170 | A Comparison of EFGM and FEM for Nonlinear Solid Mechanics Problems. Key Engineering Materials, 0, 535-536, 434-437.                                                                 | 0.4 | 0         |
| 171 | Modeling and Simulation of Metal Forming Processes by XFEM. Applied Mechanics and Materials, 0, 829, 41-45.                                                                          | 0.2 | 5         |
| 172 | Fatigue Crack Growth Simulations in Ductile Materials by Coupled FE-EFG Approach. Applied Mechanics and Materials, 0, 829, 73-77.                                                    | 0.2 | 0         |
| 173 | Composite Patch Repair of Structural Member by Coupled FE-EFG Approach. Applied Mechanics and Materials, 0, 829, 78-82.                                                              | 0.2 | 0         |
| 174 | Indentation behavior of metal matrix composites reinforced with arbitrary shape particle using a coupled FE-EFG approach. Mechanics of Advanced Materials and Structures, 0, , 1-18. | 1.5 | 2         |