Bo Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2625412/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A ₂ -A ₁ -DA ₁ D-A ₁ -A ₂ -Type Non-Fullerene Acceptors for Poly(3-hexylthiophene)-Based Organic Photovoltaic Application. Journal of Physical Chemistry C, 2022, 126, 8588-8595.	1.5	2
2	Controlling the Cyanoâ€Containing A ₂ Segments in A ₂ â€A ₁ â€Dâ€A ₁ â€A ₂ Type Nonâ€Fullerene Acceptors to Cor with a Benzotriazoleâ€Based pâ€Type Polymer: "Sameâ€Acceptorâ€Strategy―for High <i>V</i> _{OCOrganic Solar Cells. Solar Rrl, 2019, 3, 1800332.}		23
3	Quinoxaline-Containing Nonfullerene Small-Molecule Acceptors with a Linear A ₂ -A ₁ -D-A ₁ -A ₂ Skeleton for Poly(3-hexylthiophene)-Based Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 10254-10261.	4.0	60
4	A perylenediimide dimer containing an asymmetric π-bridge and its fused derivative for fullerene-free organic solar cells. Journal of Materials Chemistry C, 2018, 6, 2580-2587.	2.7	34
5	Modulating the Symmetry of Benzodithiophene by Molecular Tailoring for the Application in Naphthalene Diimideâ€Based Nâ€Type Photovoltaic Polymers. Solar Rrl, 2018, 2, 1700230.	3.1	28
6	Design and Synthesis of a Novel nâ€Type Polymer Based on Asymmetric Rylene Diimide for the Application in Allâ€Polymer Solar Cells. Macromolecular Rapid Communications, 2018, 39, e1700715.	2.0	27
7	Simultaneously Achieved High Openâ€Circuit Voltage and Efficient Charge Generation by Fineâ€Tuning Chargeâ€Transfer Driving Force in Nonfullerene Polymer Solar Cells. Advanced Functional Materials, 2018, 28, 1704507.	7.8	180
8	Enhanced open circuit voltage of small molecule acceptors containing angular-shaped indacenodithiophene units for P3HT-based organic solar cells. Journal of Materials Chemistry C, 2018, 6, 12347-12354.	2.7	13
9	A ₂ –A ₁ –D–A ₁ –A ₂ type non-fullerene acceptors based on methoxy substituted benzotriazole with three different end-capped groups for P3HT-based organic solar cells. Journal of Materials Chemistry C, 2018, 6, 10902-10909.	d 2.7	33
10	The first thieno[3,4- <i>b</i>]pyrazine based small molecular acceptor with a linear A ₂ –A ₁ –A ₁ –A ₂ skeleton for fullerene-free organic solar cells with a high <i>V</i> _{oc} of 1.05 V. Chemical Communications, 2018, 54, 10770-10773.	2.2	18
11	A small molecular electron acceptor based on asymmetric hexacyclic core of thieno[1,2- b]indaceno[5,6- b ′]thienothiophene for efficient fullerene-free polymer solar cells. Science Bulletin, 2018, 63, 845-852.	4.3	28
12	Recent progress in porphyrin-based materials for organic solar cells. Journal of Materials Chemistry A, 2018, 6, 16769-16797.	5.2	215
13	The Introduction of Fluorine and Sulfur Atoms into Benzotriazoleâ€Based pâ€Type Polymers to Match with a Benzotriazoleâ€Containing nâ€Type Small Molecule: "The Sameâ€Acceptorâ€Strategy―to Realize Higl Openâ€Circuit Voltage. Advanced Energy Materials, 2018, 8, 1801582.	n10.2	122
14	Inside-fused perylenediimide dimers with planar structures for high-performance fullerene-free organic solar cells. RSC Advances, 2017, 7, 13749-13753.	1.7	9
15	Comparison among Perylene Diimide (PDI), Naphthalene Diimide (NDI), and Naphthodithiophene Diimide (NDTI) Based n-Type Polymers for All-Polymer Solar Cells Application. Macromolecules, 2017, 50, 3179-3185.	2.2	85
16	P3HT-Based Photovoltaic Cells with a High <i>V</i> _{oc} of 1.22 V by Using a Benzotriazole-Containing Nonfullerene Acceptor End-Capped with Thiazolidine-2,4-dione. ACS Macro Letters, 2017, 6, 410-414.	2.3	117
17	Achievement of High <i>V</i> _{oc} of 1.02 V for P3HTâ€Based Organic Solar Cell Using a Benzotriazoleâ€Containing Nonâ€Fullerene Acceptor. Advanced Energy Materials, 2017, 7, 1602269.	10.2	191

Nonâ€Fullerene Acceptors With A₂ = A₁â€Dâ€A₁ = A₂ Skeleton Containing Benzothiadiazole and Thiazolidineâ€2,4â€Dione for Highâ€Performance P3HTâ€Based Organic Solar 3.1 43 Cells. Solar Rrl, 2017, 1, 1700166.

#	Article	IF	CITATIONS
19	Effects of Inserting Thiophene as a π-Bridge on the Properties of Naphthalene Diimide- <i>alt</i> -Fused Thiophene Copolymers. ACS Applied Materials & Interfaces, 2017, 9, 44070-44078.	4.0	20