Sujay Raghavendra Naganna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2625287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Machine learning-based modeling of saturated hydraulic conductivity in soils of tropical semi-arid zone of India. Sadhana - Academy Proceedings in Engineering Sciences, 2022, 47, 1.	0.8	2
2	Comparative evaluation of deep learning and machine learning in modelling pan evaporation using limited inputs. Hydrological Sciences Journal, 2022, 67, 1309-1327.	1.2	11
3	Streambed pollution: A comprehensive review of its sources, eco-hydro-geo-chemical impacts, assessment, and mitigation strategies. Chemosphere, 2022, 300, 134589.	4.2	11
4	Integration of Multiple Models with Hybrid Artificial Neural Network-Genetic Algorithm for Soil Cation-Exchange Capacity Prediction. Complexity, 2022, 2022, 1-15.	0.9	1
5	Insights into the Multifaceted Applications of Architectural Concrete: A State-of-the-Art Review. Arabian Journal for Science and Engineering, 2021, 46, 4213-4223.	1.7	5
6	Sourcing CHIRPS precipitation data for streamflow forecasting using intrinsic time-scale decomposition based machine learning models. Hydrological Sciences Journal, 2021, 66, 1437-1456.	1.2	16
7	Application of gradient tree boosting regressor for the prediction of scour depth around bridge piers. Journal of Hydroinformatics, 2021, 23, 849-863.	1.1	11
8	Geographically Weighted Regression Hybridized with Kriging Model for Delineation of Drought-Prone Areas. Environmental Modeling and Assessment, 2021, 26, 803-821.	1.2	5
9	Assessment of spatio-temporal variability of rainfall and mean air temperature over Ardabil province, Iran. SN Applied Sciences, 2021, 3, 1.	1.5	6
10	Valorization of incinerator bottom ash for the production of resource-efficient eco-friendly concrete: Performance and toxicological characterization. Architecture, Structures and Construction, 2021, 1, 65-78.	0.7	6
11	Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies. Agriculture (Switzerland), 2021, 11, 983.	1.4	64
12	Multiple AI model integration strategy—Application to saturated hydraulic conductivity prediction from easily available soil properties. Soil and Tillage Research, 2020, 196, 104449.	2.6	34
13	Spatial variability of ground water quality: a case study of Udupi district, Karnataka State, India. Journal of Earth System Science, 2020, 129, 1.	0.6	16
14	Nano-TiO2 particles: a photocatalytic admixture to amp up the performance efficiency of cementitious composites. Sadhana - Academy Proceedings in Engineering Sciences, 2020, 45, 1.	0.8	10
15	Hybrid wavelet packet machine learning approaches for drought modeling. Environmental Earth Sciences, 2020, 79, 1.	1.3	36
16	Hourly River Flow Forecasting: Application of Emotional Neural Network Versus Multiple Machine Learning Paradigms. Water Resources Management, 2020, 34, 1075-1091.	1.9	53
17	ON THE EVALUATION OF THE GRADIENT TREE BOOSTING MODEL FOR GROUNDWATER LEVEL FORECASTING. Knowledge-based Engineering and Eciences, 2020, 1, 48-57.	1.2	36
18	Enhancing streamflow forecasting using the augmenting ensemble procedure coupled machine learning models: case study of Aswan High Dam. Hydrological Sciences Journal, 2019, 64, 1629-1646.	1.2	42

#	Article	IF	CITATIONS
19	Dew Point Temperature Estimation: Application of Artificial Intelligence Model Integrated with Nature-Inspired Optimization Algorithms. Water (Switzerland), 2019, 11, 742.	1.2	70
20	Artificial intelligence approaches for spatial modeling of streambed hydraulic conductivity. Acta Geophysica, 2019, 67, 891-903.	1.0	12
21	Estimation of dew point temperature using SVM and ELM for humid and semi-arid regions of India. ISH Journal of Hydraulic Engineering, 2018, 24, 190-197.	1.1	11
22	Variability of streambed hydraulic conductivity in an intermittent stream reach regulated by Vented Dams: A case study. Journal of Hydrology, 2018, 562, 477-491.	2.3	17
23	SUSTAINABLE UTILIZATION OF DISCARDED FOUNDRY SAND AND CRUSHED BRICK MASONRY AGGREGATE IN THE PRODUCTION OF LIGHTWEIGHT CONCRETE. Engineering Structures and Technologies, 2017, 9, 52-61.	0.2	7
24	Factors influencing streambed hydraulic conductivity and their implications on stream–aquifer interaction: a conceptual review. Environmental Science and Pollution Research, 2017, 24, 24765-24789.	2.7	34
25	Eco-concrete for sustainability: utilizing aluminium dross and iron slag as partial replacement materials. Clean Technologies and Environmental Policy, 2017, 19, 2291-2304.	2.1	31
26	Wavelet coupled MARS and M5 Model Tree approaches for groundwater level forecasting. Journal of Hydrology, 2017, 553, 356-373.	2.3	98
27	Investigation of concrete produced using recycled aluminium dross for hot weather concreting conditions. Resource-efficient Technologies, 2016, 2, 68-80.	0.1	33
28	Multistep Ahead Groundwater Level Time-Series Forecasting Using Gaussian Process Regression and ANFIS. Advances in Intelligent Systems and Computing, 2016, , 289-302.	0.5	18
29	Sustainable Development and Management of Groundwater Resources in Mining Affected Areas: A Review. Procedia Earth and Planetary Science, 2015, 11, 598-604.	0.6	37
30	Forecasting monthly groundwater level fluctuations in coastal aquifers using hybrid Wavelet packet–Support vector regression. Cogent Engineering, 2015, 2, 999414.	1.1	48
31	Support vector machine applications in the field of hydrology: A review. Applied Soft Computing Journal, 2014, 19, 372-386.	4.1	530