Rico Fischer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2625199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global patterns of tropical forest fragmentation. Nature, 2018, 554, 519-522.	13.7	409
2	High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nature Communications, 2017, 8, 14855.	5.8	213
3	Lessons learned from applying a forest gap model to understand ecosystem and carbon dynamics of complex tropical forests. Ecological Modelling, 2016, 326, 124-133.	1.2	115
4	Linking lidar and forest modeling to assess biomass estimation across scales and disturbance states. Remote Sensing of Environment, 2018, 205, 199-209.	4.6	68
5	Accelerated forest fragmentation leads to critical increase in tropical forest edge area. Science Advances, 2021, 7, eabg7012.	4.7	66
6	Computer and remoteâ€sensing infrastructure to enhance largeâ€scale testing of individualâ€based forest models. Frontiers in Ecology and the Environment, 2015, 13, 503-511.	1.9	64
7	The importance of forest structure for carbon fluxes of the Amazon rainforest. Environmental Research Letters, 2018, 13, 054013.	2.2	60
8	Gap models and their individual-based relatives in the assessment of the consequences of global change. Environmental Research Letters, 2018, 13, 033001.	2.2	56
9	The Relevance of Forest Structure for Biomass and Productivity in Temperate Forests: New Perspectives for Remote Sensing. Surveys in Geophysics, 2019, 40, 709-734.	2.1	47
10	Monitoring of Forest Structure Dynamics by Means of L-Band SAR Tomography. Remote Sensing, 2017, 9, 1229.	1.8	44
11	Simulating the impacts of reduced rainfall on carbon stocks and net ecosystem exchange in a tropical forest. Environmental Modelling and Software, 2014, 52, 200-206.	1.9	39
12	Dynamics of Forest Fragmentation and Connectivity Using Particle and Fractal Analysis. Scientific Reports, 2019, 9, 12228.	1.6	38
13	Tackling unresolved questions in forest ecology: The past and future role of simulation models. Ecology and Evolution, 2021, 11, 3746-3770.	0.8	37
14	Structure metrics to generalize biomass estimation from lidar across forest types from different continents. Remote Sensing of Environment, 2020, 237, 111597.	4.6	31
15	Impacts of precipitation variability on the dynamics of a dry tropical montane forest. Ecological Modelling, 2016, 320, 92-101.	1.2	29
16	From small-scale forest structure to Amazon-wide carbon estimates. Nature Communications, 2019, 10, 5088.	5.8	25
17	The carbon fluxes in different successional stages: modelling the dynamics of tropical montane forests in South Ecuador. Forest Ecosystems, 2017, 4, .	1.3	23
18	Understanding the Land Carbon Cycle with Space Data: Current Status and Prospects. Surveys in Geophysics, 2019, 40, 735-755.	2.1	22

RICO FISCHER

#	Article	IF	CITATIONS
19	Simulating Carbon Stocks and Fluxes of an African Tropical Montane Forest with an Individual-Based Forest Model. PLoS ONE, 2015, 10, e0123300.	1.1	21
20	Using airborne LiDAR to assess spatial heterogeneity in forest structure on Mount Kilimanjaro. Landscape Ecology, 2017, 32, 1881-1894.	1.9	19
21	Simulation of succession in a neotropical forest: High selective logging intensities prolong the recovery times of ecosystem functions. Forest Ecology and Management, 2018, 430, 517-525.	1.4	17
22	Defaunation impacts on seed survival and its effect on the biomass of future tropical forests. Oikos, 2018, 127, 1526-1538.	1.2	17
23	Model-Assisted Estimation of Tropical Forest Biomass Change: A Comparison of Approaches. Remote Sensing, 2018, 10, 731.	1.8	16
24	Defaunation and changes in climate and fire frequency have synergistic effects on aboveground biomass loss in the brazilian savanna. Ecological Modelling, 2021, 454, 109628.	1.2	15
25	The Long-Term Consequences of Forest Fires on the Carbon Fluxes of a Tropical Forest in Africa. Applied Sciences (Switzerland), 2021, 11, 4696.	1.3	14
26	Carbon Sequestration in Mixed Deciduous Forests: The Influence of Tree Size and Species Composition Derived from Model Experiments. Forests, 2021, 12, 726.	0.9	13
27	Consequences of a Reduced Number of Plant Functional Types for the Simulation of Forest Productivity. Forests, 2018, 9, 460.	0.9	12
28	Tree Crowns Cause Border Effects in Area-Based Biomass Estimations from Remote Sensing. Remote Sensing, Sensing, 2021, 13, 1592.	1.8	12
29	Monodominance in tropical forests: modelling reveals emerging clusters and phase transitions. Journal of the Royal Society Interface, 2016, 13, 20160123.	1.5	11
30	Prediction of forest parameters and carbon accounting under different fire regimes in Miombo woodlands, Niassa Special Reserve, Northern Mozambique. Forest Policy and Economics, 2021, 133, 102625.	1.5	11
31	Challenges to aboveground biomass prediction from waveform lidar. Environmental Research Letters, 2021, 16, 125013.	2.2	9
32	An analysis of forest biomass sampling strategies across scales. Biogeosciences, 2020, 17, 1673-1683.	1.3	8
33	Climate change alters the ability of neotropical forests to provide timber and sequester carbon. Forest Ecology and Management, 2021, 492, 119166.	1.4	8
34	Mapping Amazon Forest Productivity by Fusing GEDI Lidar Waveforms with an Individual-Based Forest Model. Remote Sensing, 2021, 13, 4540.	1.8	7
35	A multi-scaled analysis of forest structure using individual-based modeling in a costa rican rainforest. Ecological Modelling, 2020, 433, 109226.	1.2	5
36	Deriving Tree Size Distributions of Tropical Forests from Lidar. Remote Sensing, 2021, 13, 131.	1.8	5

#	Article	IF	CITATIONS
37	Simulating Forest Dynamics of Lowland Rainforests in Eastern Madagascar. Forests, 2018, 9, 214.	0.9	4
38	Importance of the forest state in estimating biomass losses from tropical forests: combining dynamic forest models and remote sensing. Biogeosciences, 2022, 19, 1891-1911.	1.3	3
39	Lianas in silico, ecological insights from a model of structural parasitism. Ecological Modelling, 2020, 431, 109159.	1.2	2