
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2625186/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Critical Shear Stress of Clathrate and Semiclathrate Hydrates on Solid Substrates. Energy & Fuels, 2022, 36, 3619-3627.	2.5	4
2	Critical Surface Tension and Specific Surface Free Energy of Clathrate Hydrate. Energy & Fuels, 2022, 36, 407-414.	2.5	5
3	Preliminary Screening and Formulation of New Generation Nanoparticles for Stable Pickering Emulsion in Cold and Hot Heavy-Oil Recovery. SPE Reservoir Evaluation and Engineering, 2021, 24, 66-79.	1.1	9
4	Brief Overview of Ice Nucleation. Molecules, 2021, 26, 392.	1.7	19
5	Generation of pickering emulsions by activating natural asphaltenes as nano materials: An experimental analysis for cost-effective heavy-oil recovery. Journal of Molecular Liquids, 2021, 339, 116759.	2.3	10
6	Nucleation curves of ice in quasi–free water droplets. Chemical Engineering Science, 2021, 242, 116751.	1.9	6
7	Kinetic Inhibition of CO ₂ Hydrate by Carboxymethylcellulose Sodium through Retarded Mass Transfer. Energy & Fuels, 2021, 35, 18615-18622.	2.5	6
8	Nucleation of Gas Hydrates. , 2020, , .		5
9	Synergism of Ethers on the Kinetic Inhibition Performance of Poly(<i>N</i> -vinyl pyrrolidone) on Methane Hydrate in a Pilot-Scale Flow Loop. Energy & Fuels, 2020, 34, 2790-2799.	2.5	12
10	Interfacial Gaseous States. , 2020, , 83-109.		3
11	Nucleation of Gas Hydrates. , 2020, , 111-148.		7
12	Nucleation Theory. , 2020, , 1-33.		0
13	Experimental Methods for Determination of Nucleation Rates. , 2020, , 35-59.		0
14	Gas Hydrates. , 2020, , 61-81.		0
15	Growth Kinetics of Methane Hydrate in a Pilot-Scale Flow Loop. Energy & amp; Fuels, 2019, 33, 7717-7725.	2.5	7
16	Nucleation Curve of Carbon Dioxide Hydrate from a Linear Cooling Ramp Method. Journal of Physical Chemistry A, 2019, 123, 7911-7919.	1.1	18
17	Nucleation curve of carbon dioxide hydrate. Energy Procedia, 2019, 158, 5928-5933.	1.8	5
18	Scaling laws for nucleation rates of gas hydrate. Fuel, 2019, 253, 1597-1604.	3.4	23

#	Article	IF	CITATIONS
19	Nucleation curves of methane hydrate from constant cooling ramp methods. Fuel, 2018, 223, 286-293.	3.4	42
20	Ranking of kinetic hydrate inhibitors using a high pressure differential scanning calorimeter. Chemical Engineering Science, 2018, 183, 30-36.	1.9	26
21	Interfacial Nanobubbles and the Memory Effect of Natural Gas Hydrates. Journal of Physical Chemistry C, 2018, 122, 11399-11406.	1.5	47
22	Simultaneous Hydrate and Corrosion Inhibition with Modified Poly(vinyl caprolactam) Polymers. Energy & Fuels, 2017, 31, 6724-6731.	2.5	46
23	High throughput synthesis and characterization of PNIPAM-based kinetic hydrate inhibitors. Fuel, 2017, 188, 522-529.	3.4	34
24	Nucleation curves of methane – propane mixed gas hydrates in hydrocarbon oil. Chemical Engineering Science, 2016, 155, 1-9.	1.9	36
25	High-Throughput Testing of Kinetic Hydrate Inhibitors. Energy & Fuels, 2016, 30, 5432-5438.	2.5	17
26	Nucleation curves of methane–propane mixed gas hydrates in the presence of a stainless steel wall. Fluid Phase Equilibria, 2016, 413, 142-147.	1.4	24
27	Nucleation curves of model natural gas hydrates on a quasiâ€free water droplet. AICHE Journal, 2015, 61, 2611-2617.	1.8	48
28	Is the Surface of Gas Hydrates Dry?. Energies, 2015, 8, 5361-5369.	1.6	18
29	Statistical Study of the Memory Effect in Model Natural Gas Hydrate Systems. Journal of Physical Chemistry A, 2015, 119, 10784-10790.	1.1	43
30	Fuel Gas Hydrate Formation Probability Distributions on Quasi-free Water Droplets. Energy & Fuels, 2015, 29, 137-142.	2.5	12
31	Effect of Hydrate Shell Formation on the Stability of Dry Water. Journal of Physical Chemistry C, 2015, 119, 1690-1699.	1.5	52
32	Nucleation Probability Distributions of Methane–Propane Mixed Gas Hydrates in Salt Solutions and Urea. Energy & Fuels, 2015, 29, 6259-6270.	2.5	11
33	Probability Distributions of Natural Gas Hydrate Formation in Sodium Dodecyl Sulfate Aqueous Solutions. Energy & Fuels, 2015, 29, 5692-5700.	2.5	21
34	Measurements of gas hydrate formation probability distributions on a quasi-free water droplet. Review of Scientific Instruments, 2014, 85, 065115.	0.6	25
35	Quantitative kinetic inhibitor comparisons and memory effect measurements from hydrate formation probability distributions. Chemical Engineering Science, 2014, 107, 1-12.	1.9	87
36	Study of electrical conductivity response upon formation of ice and gas hydrates from salt solutions by a second generation high pressure electrical conductivity probe. Review of Scientific Instruments, 2014, 85, 115101.	0.6	8

#	Article	IF	CITATIONS
37	Formation of Ice, Tetrahydrofuran Hydrate, and Methane/Propane Mixed Gas Hydrates in Strong Monovalent Salt Solutions. Energy & Fuels, 2014, 28, 6877-6888.	2.5	46
38	Effect of Kinetic Hydrate Inhibitor Polyvinylcaprolactam on Cyclopentane Hydrate Cohesion Forces and Growth. Energy & Fuels, 2014, 28, 3632-3637.	2.5	22
39	Measurements of Cohesion Hysteresis between Cyclopentane Hydrates in Liquid Cyclopentane. Energy & Fuels, 2013, 27, 5168-5174.	2.5	9
40	Probability distributions of gas hydrate formation. AICHE Journal, 2013, 59, 2640-2646.	1.8	43
41	Methane–Propane Mixed Gas Hydrate Film Growth on the Surface of Water and Luvicap EG Solutions. Energy & Fuels, 2013, 27, 2548-2554.	2.5	33
42	Stability of Interfacial Nanobubbles. Langmuir, 2013, 29, 1017-1023.	1.6	189
43	Development of a high pressure electrical conductivity probe for experimental studies of gas hydrates in electrolytes. Review of Scientific Instruments, 2013, 84, 015110.	0.6	16
44	Statistical Analysis of Supercooling in Fuel Gas Hydrate Systems. Energy & Fuels, 2012, 26, 1820-1827.	2.5	46
45	Effects of Surfactants on the Formation and the Stability of Interfacial Nanobubbles. Langmuir, 2012, 28, 10471-10477.	1.6	77
46	Synthesis of Effective Kinetic Inhibitors for Natural Gas Hydrates. Energy & Fuels, 2012, 26, 1037-1043.	2.5	45
47	Influence of Dissolved Atmospheric Gases on the Spontaneous Emulsification of Alkaneâ^'Ethanolâ~'Water Systems. Journal of Physical Chemistry C, 2011, 115, 8768-8774.	1.5	16
48	Interfacial Gaseous States on Crystalline Surfaces. Journal of Physical Chemistry C, 2011, 115, 736-743.	1.5	38
49	Development of a high pressure automated lag time apparatus for experimental studies and statistical analyses of nucleation and growth of gas hydrates. Review of Scientific Instruments, 2011, 82, 065109.	0.6	53
50	Thermodynamic Stability of Interfacial Gaseous States. Journal of Physical Chemistry B, 2008, 112, 13671-13675.	1.2	59
51	Physical Properties of Nanobubbles on Hydrophobic Surfaces in Water and Aqueous Solutions. Langmuir, 2006, 22, 5025-5035.	1.6	380
52	Removal of Induced Nanobubbles from Water/Graphite Interfaces by Partial Degassing. Langmuir, 2006, 22, 9238-9243.	1.6	111
53	Comment on Reassessment of Solidification in Fluids Confined between Mica Sheets. Langmuir, 2006, 22, 2397-2398.	1.6	21
54	Phase Transitions of Capillary-Held Liquids in a Slit-like Pore. Journal of Physical Chemistry B, 2006, 110, 25982-25993.	1.2	17

#	Article	IF	CITATIONS
55	Adhesion and Friction of Polystyrene Surfaces aroundTg. Macromolecules, 2006, 39, 2350-2363.	2.2	75
56	Effects of Sub-Ã¥ngstrom (pico-scale) Structure of Surfaces on Adhesion, Friction, and Bulk Mechanical Properties. Journal of Materials Research, 2005, 20, 1952-1972.	1.2	52
57	Adhesion and Friction of Polymer Surfaces:Â The Effect of Chain Ends. Macromolecules, 2005, 38, 3491-3503.	2.2	107
58	Crystallization in Thin Liquid Films Induced by Shear. Journal of Physical Chemistry B, 2005, 109, 12509-12514.	1.2	19
59	Preparing Contamination-free Mica Substrates for Surface Characterization, Force Measurements, and Imaging. Langmuir, 2004, 20, 3616-3622.	1.6	66
60	Further Studies on the Effect of Degassing on the Dispersion and Stability of Surfactant-Free Emulsions. Langmuir, 2004, 20, 3129-3137.	1.6	75
61	Evaporation and instabilities of microscopic capillary bridges. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 803-808.	3.3	126
62	Nanoscale Mechanisms of Evaporation, Condensation and Nucleation in Confined Geometries. Journal of Physical Chemistry B, 2002, 106, 3534-3537.	1.2	39
63	Micromanipulation of phospholipid bilayers by atomic force microscopy. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1564, 165-172.	1.4	31
64	Adhesion and Friction Mechanisms of Polymer-on-Polymer Surfaces. Science, 2002, 297, 379-382.	6.0	278
65	Phase Behavior of Long-Chain n-Alkanes at One and between Two Mica Surfaces. Journal of Physical Chemistry B, 2001, 105, 5906-5913.	1.2	29
66	EXPERIMENTAL OBSERVATIONS OF SURFACE FREEZING. International Journal of Modern Physics B, 2001, 15, 3055-3077.	1.0	17
67	Surface Supercooling and Stability ofn-Alkane Films. Physical Review Letters, 2000, 84, 698-700.	2.9	34
68	Phase transition ofn-alkane layers adsorbed on mica. Physical Review E, 2000, 61, 7239-7242.	0.8	25
69	A Method for the Calibration of Force Microscopy Cantilevers via Hydrodynamic Drag. Langmuir, 2000, 16, 9282-9286.	1.6	38
70	Kinetics of Capillary Condensation in a Nanoscale Pore. Physical Review Letters, 1999, 82, 4667-4670.	2.9	103
71	Direct observation of surface effects on the freezing and melting of an n-alkane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 159, 135-148.	2.3	29