Claire Wynne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2625119/publications.pdf

Version: 2024-02-01

		1162367	1125271	
13	480	8	13	
papers	citations	h-index	g-index	
13	13	13	933	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Discrimination of immune cell activation using Raman micro-spectroscopy in an in-vitro & amp; ex-vivo model. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 248, 119118.	2.0	20
2	Comparison of sample preparation methodologies towards optimisation of Raman spectroscopy for peripheral blood mononuclear cells. Analytical Methods, 2021, 13, 1019-1032.	1.3	8
3	3-Hexanoyl-7-nitrobenz-2-oxa-1,3-diazol-4-yl-cholesterol (3-NBD-cholesterol) is a versatile cholesterol tracer. Steroids, 2021, 171, 108840.	0.8	4
4	A spectroscopic diagnostic for rheumatoid arthritis using liquid biopsies. Clinical Spectroscopy, 2021, 3, 100009.	0.6	2
5	A Novel Pool of Microparticle Cholesterol Is Elevated in Rheumatoid Arthritis but Not in Systemic Lupus Erythematosus Patients. International Journal of Molecular Sciences, 2020, 21, 9228.	1.8	1
6	AÂreview of applications of Raman spectroscopy in immunology. Biomedical Spectroscopy and Imaging, 2020, 9, 23-31.	1.2	7
7	TMEM203 is a binding partner and regulator of STING-mediated inflammatory signaling in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16479-16488.	3.3	43
8	TRIM68 Negatively Regulates IFN-β Production by Degrading TRK Fused Gene, a Novel Driver of IFN-β Downstream of Anti-Viral Detection Systems. PLoS ONE, 2014, 9, e101503.	1,1	23
9	Btk Regulates Macrophage Polarization in Response to Lipopolysaccharide. PLoS ONE, 2014, 9, e85834.	1.1	109
10	Genetics of SLE: Functional Relevance for Monocytes/Macrophages in Disease. Clinical and Developmental Immunology, 2012, 2012, 1-15.	3.3	41
11	Defects in acute responses to TLR4 in Btk-deficient mice result in impaired dendritic cell-induced IFN-Î ³ production by natural killer cells. Clinical Immunology, 2012, 142, 373-382.	1.4	28
12	Antiviral TRIMs: friend or foe in autoimmune and autoinflammatory disease?. Nature Reviews Immunology, 2011, 11, 617-625.	10.6	79
13	Self Protection from Anti-Viral Responses – Ro52 Promotes Degradation of the Transcription Factor IRF7 Downstream of the Viral Toll-Like Receptors. PLoS ONE, 2010, 5, e11776.	1.1	115