Fabien Gosselet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2624942/publications.pdf Version: 2024-02-01

FARIEN COSSELET

#	Article	IF	CITATIONS
1	Targeting and Crossing the Blood-Brain Barrier with Extracellular Vesicles. Cells, 2020, 9, 851.	4.1	270
2	Resveratrol and Grape Extract-loaded Solid Lipid Nanoparticles for the Treatment of Alzheimer's Disease. Molecules, 2017, 22, 277.	3.8	222
3	PECAM-1 Stabilizes Blood-Brain Barrier Integrity and Favors Paracellular T-Cell Diapedesis Across the Blood-Brain Barrier During Neuroinflammation. Frontiers in Immunology, 2019, 10, 711.	4.8	122
4	Apical-to-Basolateral Transport of Amyloid-β Peptides through Blood-Brain Barrier Cells is Mediated by the Receptor for Advanced Glycation End-Products and is Restricted by P-Glycoprotein. Journal of Alzheimer's Disease, 2010, 22, 849-859.	2.6	120
5	Receptor-mediated PLGA nanoparticles for glioblastoma multiforme treatment. International Journal of Pharmaceutics, 2018, 545, 84-92.	5.2	104
6	Cyclodextrins as Emerging Therapeutic Tools in the Treatment of Cholesterol-Associated Vascular and Neurodegenerative Diseases. Molecules, 2016, 21, 1748.	3.8	94
7	Physiological Pathway for Low-Density Lipoproteins across the Blood-Brain Barrier: Transcytosis through Brain Capillary Endothelial Cells In Vitro. Endothelium: Journal of Endothelial Cell Research, 2008, 15, 254-264.	1.7	89
8	Modelling the Neurovascular Unit and the Blood-Brain Barrier with the Unique Function of Pericytes. Current Neurovascular Research, 2011, 8, 258-269.	1.1	81
9	Evaluation of drug-induced neurotoxicity based on metabolomics, proteomics and electrical activity measurements in complementary CNS in vitro models. Toxicology in Vitro, 2015, 30, 138-165.	2.4	75
10	Transcriptional profiles of receptors and transporters involved in brain cholesterol homeostasis at the blood–brain barrier: Use of an in vitro model. Brain Research, 2009, 1249, 34-42.	2.2	73
11	Human CD4+ T cell subsets differ in their abilities to cross endothelial and epithelial brain barriers in vitro. Fluids and Barriers of the CNS, 2020, 17, 3.	5.0	64
12	Efficient Docosahexaenoic Acid Uptake by the Brain from a Structured Phospholipid. Molecular Neurobiology, 2016, 53, 3205-3215.	4.0	59
13	Amyloid-β Peptides, Alzheimer's Disease and the Blood-brain Barrier. Current Alzheimer Research, 2013, 10, 1015-1033.	1.4	59
14	Brain Pericytes ABCA1 Expression Mediates Cholesterol Efflux but not Cellular Amyloid-β Peptide Accumulation. Journal of Alzheimer's Disease, 2012, 30, 489-503.	2.6	58
15	A silicon nanomembrane platform for the visualization of immune cell trafficking across the human blood–brain barrier under flow. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 395-410.	4.3	57
16	HIV Neuroinfection and Alzheimer's Disease: Similarities and Potential Links?. Frontiers in Cellular Neuroscience, 2018, 12, 307.	3.7	56
17	Central nervous system delivery of molecules across the blood-brain barrier. Neurochemistry International, 2021, 144, 104952.	3.8	55
18	In vitro discrimination of the role of LRP1 at the BBB cellular level: Focus on brain capillary endothelial cells and brain pericytes. Brain Research, 2015, 1594, 15-26.	2.2	54

#	Article	IF	CITATIONS
19	ALCAM (CD166) is involved in extravasation of monocytes rather than T cells across the blood–brain barrier. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2894-2909.	4.3	53
20	BMP2 and BMP6 control p57Kip2 expression and cell growth arrest/terminal differentiation in normal primary human epidermal keratinocytes. Cellular Signalling, 2007, 19, 731-739.	3.6	50
21	Topical Intestinal Aminoimidazole Agonists of G-Protein-Coupled Bile Acid Receptor 1 Promote Glucagon Like Peptide-1 Secretion and Improve Glucose Tolerance. Journal of Medicinal Chemistry, 2017, 60, 4185-4211.	6.4	48
22	Effects of oxysterols on the blood–brain barrier: Implications for Alzheimer's disease. Biochemical and Biophysical Research Communications, 2014, 446, 687-691.	2.1	47
23	Advancing human induced pluripotent stem cellâ€derived bloodâ€brain barrier models for studying immune cell interactions. FASEB Journal, 2020, 34, 16693-16715.	0.5	47
24	Purpurin modulates Tau-derived VQIVYK fibrillization and ameliorates Alzheimer's disease-like symptoms in animal model. Cellular and Molecular Life Sciences, 2020, 77, 2795-2813.	5.4	46
25	Modulation of Amyloid-β1–40 Transport by ApoA1 and ApoJ Across an in vitro Model of the Blood-Brain Barrier. Journal of Alzheimer's Disease, 2016, 53, 677-691.	2.6	45
26	UVB-induced mutations in human key gatekeeper genes governing signalling pathways and consequences for skin tumourigenesis. Photochemical and Photobiological Sciences, 2003, 2, 825.	2.9	44
27	ST6GALNAC5 Expression Decreases the Interactions between Breast Cancer Cells and the Human Blood-Brain Barrier. International Journal of Molecular Sciences, 2016, 17, 1309.	4.1	44
28	Bexarotene Promotes Cholesterol Efflux andÂRestricts Apical-to-Basolateral Transport of Amyloid-β Peptides in an In Vitro Model of the Human Blood-Brain Barrier. Journal of Alzheimer's Disease, 2015, 48, 849-862.	2.6	43
29	Ketone Bodies Promote Amyloid-β1–40 Clearance in a Human in Vitro Blood–Brain Barrier Model. International Journal of Molecular Sciences, 2020, 21, 934.	4.1	42
30	Oxysterols decrease apical-to-basolateral transport of Aß peptides via an ABCB1-mediated process in an in vitro Blood-brain barrier model constituted of bovine brain capillary endothelial cells. Brain Research, 2013, 1517, 1-15.	2.2	40
31	Zika Virus Infection Promotes Local Inflammation, Cell Adhesion Molecule Upregulation, and Leukocyte Recruitment at the Blood-Brain Barrier. MBio, 2020, 11, .	4.1	40
32	Role of ABCA7 in Human Health and in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 4603.	4.1	40
33	Adapting coculture in vitro models of the blood–brain barrier for use in cancer research: maintaining an appropriate endothelial monolayer for the assessment of transendothelial migration. Laboratory Investigation, 2016, 96, 588-598.	3.7	38
34	Mimicking brain tissue binding in an in vitro model of the blood-brain barrier illustrates differences between in vitro and in vivo methods for assessing the rate of brain penetration. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 453-461.	4.3	37
35	Nonionotropic Action of Endothelial NMDA Receptors on Blood–Brain Barrier Permeability via Rho/ROCK-Mediated Phosphorylation of Myosin. Journal of Neuroscience, 2020, 40, 1778-1787. 	3.6	36
36	In vitro blood–brain barrier permeability predictions for GABAA receptor modulating piperine analogs. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 103, 118-126.	4.3	35

#	Article	IF	CITATIONS
37	Homology Modeling of the Human P-glycoprotein (ABCB1) and Insights into Ligand Binding through Molecular Docking Studies. International Journal of Molecular Sciences, 2020, 21, 4058.	4.1	35
38	Transient blood–brain barrier disruption is induced by low pulsed electrical fields in vitro: an analysis of permeability and trans-endothelial electric resistivity. Drug Delivery, 2019, 26, 459-469.	5.7	34
39	Caspase-1 has a critical role in blood-brain barrier injury and its inhibition contributes to multifaceted repair. Journal of Neuroinflammation, 2020, 17, 267.	7.2	34
40	ABCA7 Downregulation Modifies Cellular Cholesterol Homeostasis and Decreases Amyloid-β Peptide Efflux in an in vitro Model of the Blood-Brain Barrier. Journal of Alzheimer's Disease, 2018, 64, 1195-1211.	2.6	33
41	Serum-derived factors of breast cancer patients with brain metastases alter permeability of a human blood–brain barrier model. Fluids and Barriers of the CNS, 2020, 17, 31.	5.0	33
42	Contribution of brain pericytes in blood–brain barrier formation and maintenance: a transcriptomic study of cocultured human endothelial cells derived from hematopoietic stem cells. Fluids and Barriers of the CNS, 2020, 17, 48.	5.0	32
43	Flow induces barrier and glycocalyx-related genes and negative surface charge in a lab-on-a-chip human blood-brain barrier model. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2201-2215.	4.3	30
44	Truncated thioredoxin (Trxâ€80) promotes proâ€inflammatory macrophages of the M1 phenotype and enhances atherosclerosis. Journal of Cellular Physiology, 2013, 228, 1577-1583.	4.1	29
45	GM1 Oligosaccharide Crosses the Human Blood–Brain Barrier In Vitro by a Paracellular Route. International Journal of Molecular Sciences, 2020, 21, 2858.	4.1	29
46	β-Cyclodextrins Decrease Cholesterol Release and ABC-Associated Transporter Expression in Smooth Muscle Cells and Aortic Endothelial Cells. Frontiers in Physiology, 2016, 7, 185.	2.8	28
47	Brain pericytes from stress-susceptible pigs increase blood-brain barrier permeability in vitro. Fluids and Barriers of the CNS, 2012, 9, 11.	5.0	27
48	Development of a human in vitro blood–brain tumor barrier model of diffuse intrinsic pontine glioma to better understand the chemoresistance. Fluids and Barriers of the CNS, 2020, 17, 37.	5.0	27
49	Selection of a Relevant In Vitro Blood-Brain Barrier Model to Investigate Pro-Metastatic Features of Human Breast Cancer Cell Lines. PLoS ONE, 2016, 11, e0151155.	2.5	26
50	SARS-CoV-2 Poorly Replicates in Cells of the Human Blood-Brain Barrier Without Associated Deleterious Effects. Frontiers in Immunology, 2021, 12, 697329.	4.8	26
51	A differential proteomic approach identifies structural and functional components that contribute to the differentiation of brain capillary endothelial cells. Journal of Proteomics, 2011, 75, 628-641.	2.4	25
52	Blood-Brain Barrier Cellular Responses Toward Organophosphates: Natural Compensatory Processes and Exogenous Interventions to Rescue Barrier Properties. Frontiers in Cellular Neuroscience, 2018, 12, 359.	3.7	23
53	PLGA protein nanocarriers with tailor-made fluorescence/MRI/PET imaging modalities. Nanoscale, 2020, 12, 4988-5002.	5.6	22
54	Differential neurovirulence of Usutu virus lineages in mice and neuronal cells. Journal of Neuroinflammation, 2021, 18, 11.	7.2	21

#	Article	IF	CITATIONS
55	Discovery of pyrazolo-thieno[3,2-d]pyrimidinylamino-phenyl acetamides as type-II pan-tropomyosin receptor kinase (TRK) inhibitors: Design, synthesis, and biological evaluation. European Journal of Medicinal Chemistry, 2021, 216, 113265.	5.5	21
56	Study of Usutu virus neuropathogenicity in mice and human cellular models. PLoS Neglected Tropical Diseases, 2020, 14, e0008223.	3.0	20
57	Sodium Transporters Are Involved in Lithium Influx in Brain Endothelial Cells. Molecular Pharmaceutics, 2018, 15, 2528-2538.	4.6	19
58	Antimalarial Drug Discovery: From Quinine to the Most Recent Promising Clinical Drug Candidates. Current Medicinal Chemistry, 2022, 29, 3326-3365.	2.4	18
59	Potential neurotoxicity of titanium implants: Prospective, in-vivo and in-vitro study. Biomaterials, 2021, 276, 121039.	11.4	18
60	The Effect of Sodium Bicarbonate, a Beneficial Adjuvant Molecule in Cystic Fibrosis, on Bronchial Epithelial Cells Expressing a Wild-Type or Mutant CFTR Channel. International Journal of Molecular Sciences, 2020, 21, 4024.	4.1	17
61	Pharmacokinetics and In Vitro Blood-Brain Barrier Screening of the Plant-Derived Alkaloid Tryptanthrin. Planta Medica, 2016, 82, 1021-1029.	1.3	16
62	The Blood–Brain Barrier, an Evolving Concept Based on Technological Advances and Cell–Cell Communications. Cells, 2022, 11, 133.	4.1	16
63	Naphthoquinone–Dopamine Hybrids Inhibit αâ€Synuclein Aggregation, Disrupt Preformed Fibrils, and Attenuate Aggregateâ€Induced Toxicity. Chemistry - A European Journal, 2020, 26, 16486-16496.	3.3	15
64	Endothelial Iron Homeostasis Regulates Blood-Brain Barrier Integrity via the HIF2α—Ve-Cadherin Pathway. Pharmaceutics, 2021, 13, 311.	4.5	15
65	Transport study of interleukin-1 inhibitors using a human in vitro model of the blood-brain barrier. Brain, Behavior, & Immunity - Health, 2021, 16, 100307.	2.5	14
66	Food-Derived Hemorphins Cross Intestinal and Blood–Brain Barriers In Vitro. Frontiers in Endocrinology, 2018, 9, 159.	3.5	13
67	New Lipidyl-Cyclodextrins Obtained by Ring Opening of Methyl Oleate Epoxide Using Ball Milling. Biomolecules, 2020, 10, 339.	4.0	13
68	Blood–Brain Barrier Proteomics: Towards the Understanding of Neurodegenerative Diseases. Archives of Medical Research, 2014, 45, 730-737.	3.3	12
69	Efficacy Assessment of an Uncharged Reactivator of NOP-Inhibited Acetylcholinesterase Based on Tetrahydroacridine Pyridine-Aldoxime Hybrid in Mouse Compared to Pralidoxime. Biomolecules, 2020, 10, 858.	4.0	12
70	Miniaturization and Automation of a Human In Vitro Blood–Brain Barrier Model for the High-Throughput Screening of Compounds in the Early Stage of Drug Discovery. Pharmaceutics, 2021, 13, 892.	4.5	12
71	Disease-Induced Alterations in Brain Drug Transporters in Animal Models of Alzheimer's Disease. Pharmaceutical Research, 2017, 34, 2652-2662.	3.5	11
72	Transport Studies Using Blood-Brain Barrier In Vitro Models: A Critical Review and Guidelines. Handbook of Experimental Pharmacology, 2020, , 187-204.	1.8	11

#	Article	IF	CITATIONS
73	A Miniaturized Pump Out Method for Characterizing Molecule Interaction with ABC Transporters. International Journal of Molecular Sciences, 2019, 20, 5529.	4.1	10
74	Evaluation of a human iPSC-derived BBB model for repeated dose toxicity testing with cyclosporine A as model compound. Toxicology in Vitro, 2021, 73, 105112.	2.4	10
75	Oxysterols and the NeuroVascular Unit (NVU): A far true love with bright and dark sides. Journal of Steroid Biochemistry and Molecular Biology, 2019, 191, 105368.	2.5	9
76	Beyond the Rule of 5: Impact of PEGylation with Various Polymer Sizes on Pharmacokinetic Properties, Structure–Properties Relationships of mPEGylated Small Agonists of TGR5 Receptor. Journal of Medicinal Chemistry, 2021, 64, 1593-1610.	6.4	9
77	A New Class of Bi- and Trifunctional Sugar Oximes as Antidotes against Organophosphorus Poisoning. Journal of Medicinal Chemistry, 2022, 65, 4649-4666.	6.4	9
78	Interaction of surfactant coated PLGA nanoparticles with in vitro human brain-like endothelial cells. International Journal of Pharmaceutics, 2022, 621, 121780.	5.2	6
79	Time-Dependent Internalization of Polymer-Coated Silica Nanoparticles in Brain Endothelial Cells and Morphological and Functional Effects on the Blood-Brain Barrier. International Journal of Molecular Sciences, 2021, 22, 1657.	4.1	5
80	First step to the improvement of the blood brain barrier passage of atazanavir encapsulated in sustainable bioorganic vesicles. International Journal of Pharmaceutics, 2020, 587, 119604.	5.2	4
81	Chemoselective Hydrogenation of 6â€Alkynylâ€3â€fluoroâ€2â€pyridinaldoximes: Access to Firstâ€inâ€Class 6â€Alkylâ€3â€Fluoroâ€2â€pyridinaldoxime Scaffolds as New Reactivators of Sarinâ€Inhibited Human Acetylcholinesterase with Increased Blood–Brain Barrier Permeability. Chemistry - A European Iournal. 2020. 26. 15035-15044.	3.3	4
82	The Mysterious Link between Cholesterol and Alzheimer?s Disease: Is the Blood-Brain Barrier a Suspect?. , 2011, 01, .		3
83	A High Output Method to Isolate Cerebral Pericytes from Mouse. Journal of Visualized Experiments, 2020, , .	0.3	2
84	O3-06-06: Modulation of beta-amyloid(1-40) peptide and apoa1/apoj transport across a blood-brain barrier model. , 2015, 11, P232-P232.		0
85	Exploring in vitro the potential effects of repeated drug treatment on the distribution of other xenobiotics at the human blood-brain barrier (BBB). Toxicology Letters, 2018, 295, S68.	0.8	Ο
86	Challenges and opportunities in the use of transcriptomic characterization of human iPSC-derived BBB models. Toxicology in Vitro, 2022, 84, 105424.	2.4	0