Rosica Mincheva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2624220/publications.pdf

Version: 2024-02-01

		304701	315719
58	1,610	22	38
papers	citations	h-index	g-index
61	61	61	1852
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Impact of Diethyl Furan-2,5-dicarboxylate as an Aromatic Biobased Monomer toward Lipase-Catalyzed Synthesis of Semiaromatic Copolyesters. ACS Applied Polymer Materials, 2022, 4, 1387-1400.	4.4	11
2	Nanocluster-Based Drug Delivery and Theranostic Systems: Towards Cancer Therapy. Polymers, 2022, 14, 1188.	4.5	10
3	Sustainable polymers. Nature Reviews Methods Primers, 2022, 2, .	21.2	78
4	Development of Low-Viscosity and High-Performance Biobased Monobenzoxazine from Tyrosol and Furfurylamine. Materials, 2021, 14, 440.	2.9	11
5	Substantial Effect of Water on Radical Melt Crosslinking and Rheological Properties of Poly(ε-Caprolactone). Polymers, 2021, 13, 491.	4.5	12
6	Innovative One-Shot Paradigm to Tune Filler–Polymer Matrix Interface Properties by Plasma Polymer Coating in Osteosynthesis Applications. ACS Applied Bio Materials, 2021, 4, 3067-3078.	4.6	1
7	Biomimetic Hierarchical Structuring of PLA by Ultra-Short Laser Pulses for Processing of Tissue Engineered Matrices: Study of Cellular and Antibacterial Behavior. Polymers, 2021, 13, 2577.	4.5	11
8	Microwave Atmospheric Plasma: A Versatile and Fast Way to Confer Antimicrobial Activity toward Direct Chitosan Immobilization onto Poly(lactic acid) Substrate. ACS Applied Bio Materials, 2021, 4, 7445-7455.	4.6	4
9	Interfacial Compatibilization into PLA/Mg Composites for Improved In Vitro Bioactivity and Stem Cell Adhesion. Molecules, 2021, 26, 5944.	3.8	10
10	Impact of organoclays on the phase morphology and the compatibilization efficiency of immiscible poly(ethylene terephthalate)/poly(εâ€caprolactone) blends. Journal of Applied Polymer Science, 2020, 137, 48812.	2.6	5
11	Development of Inherently Flameâ€"Retardant Phosphorylated PLA by Combination of Ring-Opening Polymerization and Reactive Extrusion. Materials, 2020, 13, 13.	2.9	28
12	Epimerization and chain scission of polylactides in the presence of an organic base, TBD. Polymer Degradation and Stability, 2020, 181, 109188.	5.8	10
13	Tailoring the isothermal crystallization kinetics of isodimorphic poly (butylene) Tj ETQq1 1 0.784314 rgBT /Overloo	ck 10 Tf 50 3.8	0 267 Td (<mark>su</mark> 27
14	Reactive Extrusion and Magnesium (II) N-Heterocyclic Carbene Catalyst in Continuous PLA Production. Polymers, 2019, 11, 1987.	4.5	5
15	Supramolecular Approach for Efficient Processing of Polylactide/Starch Nanocomposites. ACS Omega, 2018, 3, 1069-1080.	3.5	10
16	Poly(εâ€caprolactone) and Poly(ωâ€pentadecalactone)â€Based Networks with Twoâ€Way Shapeâ€Memory Eff through [2+2] Cycloaddition Reactions. Macromolecular Chemistry and Physics, 2018, 219, 1700345.	fect 2.2	16
17	Synthesis, characterization and stereocomplexation of polyamide $11/polylactide$ diblock copolymers. European Polymer Journal, 2018, 98, 83-93.	5.4	11
18	Novel Bio-based Flame Retardant Systems Derived from Tannic Acid. Journal of Renewable Materials, 2018, 6, 559-572.	2.2	30

#	Article	IF	Citations
19	Crystallization and Stereocomplexation of PLA-mb-PBS Multi-Block Copolymers. Polymers, 2018, 10, 8.	4.5	15
20	Design of melt-recyclable poly(l̂ μ -caprolactone)-based supramolecular shape-memory nanocomposites. RSC Advances, 2018, 8, 27119-27130.	3.6	5
21	Hydrolytic degradation of poly(<scp> </scp> â€lactic acid)/poly(methyl methacrylate) blends. Polymer International, 2018, 67, 1393-1400.	3.1	13
22	The Complex Amorphous Phase in Poly(butylene succinate- <i>ran</i> -butylene azelate) Isodimorphic Copolyesters. Macromolecules, 2017, 50, 1569-1578.	4.8	34
23	On the Bioadhesive Properties of Silicone-Based Coatings by Incorporation of Block Copolymers. Biologically-inspired Systems, 2017, , 303-343.	0.2	0
24	Increased Surface Roughness in Polydimethylsiloxane Films by Physical and Chemical Methods. Polymers, 2017, 9, 331.	4.5	34
25	Application of SSA thermal fractionation and X-ray diffraction to elucidate comonomer inclusion or exclusion from the crystalline phases in poly(butylene succinate-ran-butylene azelate) random copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2346-2358.	2.1	25
26	Multiresponsive Shape Memory Blends and Nanocomposites Based on Starch. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 19197-19201.	8.0	40
27	Binary Mixed Homopolymer Brushes Tethered to Cellulose Nanocrystals: A Step Towards Compatibilized Polyester Blends. Biomacromolecules, 2016, 17, 3048-3059.	5.4	22
28	Metal-free anti-biofouling coatings: the preparation of silicone-based nanostructured coatings via purely organic catalysis. Nanocomposites, 2016, 2, 51-57.	4.2	4
29	From cylindrical to spherical nanosized micelles by self-assembly of poly(dimethylsiloxane)-b-poly(acrylic acid) diblock copolymers. Polymer Bulletin, 2016, 73, 2129-2146.	3.3	1
30	Antibacterial PLA/PEG electrospun fibers: Comparative study between grafting and blending PEG. European Polymer Journal, 2016, 75, 223-233.	5.4	60
31	How Composition Determines the Properties of Isodimorphic Poly(butylene) Tj ETQq1 1 0.784314 rgBT /Overlock Crystalline Random Copolymers. Macromolecules, 2015, 48, 43-57.	10 Tf 50 4.8	267 Td (suc 105
32	Poly(I-lactide) and poly(butylene succinate) immiscible blends: From electrospinning to biologically active materials. Materials Science and Engineering C, 2014, 41, 119-126.	7.3	64
33	Chemical force microscopy of stimuli-responsive adhesive copolymers. Nanoscale, 2014, 6, 565-571.	5.6	17
34	Modification of the Adhesive Properties of Silicone-Based Coatings by Block Copolymers. Langmuir, 2014, 30, 358-368.	3.5	18
35	Experimental characterization of Drobot: Towards closed-loop control. , 2014, , .		2
36	Design of Multistimuli-Responsive Shape-Memory Polymer Materials by Reactive Extrusion. Chemistry of Materials, 2014, 26, 5860-5867.	6.7	64

#	Article	IF	CITATIONS
37	Preparation of narrowly dispersed stereocomplex nanocrystals: a step towards all-poly(lactic acid) nanocomposites. Journal of Materials Chemistry A, 2014, 2, 7402-7409.	10.3	21
38	Imparting Adhesion Property to Silicone Materials. Reviews of Adhesion and Adhesives, 2014, 2, 30-55.	3.4	5
39	Biobased Polyesters with Composition-Dependent Thermomechanical Properties: Synthesis and Characterization of Poly(butylene succinate- <i>co</i> butylene azelate). Biomacromolecules, 2013, 14, 890-899.	5.4	60
40	Electrospun non-woven mats from stereocomplex between high molar mass poly(l-lactide) and poly(d-lactide)-block-poly(butylene succinate) copoly(ester urethane)s. European Polymer Journal, 2012, 48, 1965-1975.	5.4	13
41	High Molecular Weight Poly(butylene succinate- <i>co</i> -butylene furandicarboxylate) Copolyesters: From Catalyzed Polycondensation Reaction to Thermomechanical Properties. Biomacromolecules, 2012, 13, 2973-2981.	5.4	192
42	Stereocomplexes from Biosourced Lactide/Butylene Succinateâ€Based Copolymers and Their Role as Crystallization Accelerating Agent. Macromolecular Chemistry and Physics, 2012, 213, 643-653.	2.2	14
43	Synthesis of Clicked Imidazoliumâ€Containing Biosourced Copolymers and Application in Carbon Nanotube Dispersion. Macromolecular Rapid Communications, 2011, 32, 1960-1964.	3.9	13
44	Marine Fouling Release Silicone/Carbon Nanotube Nanocomposite Coatings: On the Importance of the Nanotube Dispersion State. Journal of Nanoscience and Nanotechnology, 2010, 10, 2972-2978.	0.9	51
45	Polylactide Stereocomplex-Based Electrospun Materials Possessing Surface with Antibacterial and Hemostatic Properties. Biomacromolecules, 2010, 11, 151-159.	5.4	80
46	Tuning of the Surface Biological Behavior of Poly(l-lactide)-Based Electrospun Materials by Polyelectrolyte Complex Formation. Biomacromolecules, 2010, 11, 521-532.	5.4	28
47	(Quaternized/betainized) amino-based amphiphilic block copolymers: quantitative composition characterization via FTIR and thermogravimetry. E-Polymers, 2009, 9, .	3.0	2
48	Optimized waterâ€based ATRP of an anionic monomer: Comprehension and properties characterization. Journal of Polymer Science Part A, 2009, 47, 1108-1119.	2.3	16
49	Polyelectrolyte complex nanoparticles from <i>N</i> à€€arboxyethylchitosan and polycationic double hydrophilic diblock copolymers. Journal of Polymer Science Part A, 2009, 47, 2105-2117.	2.3	11
50	Natural Polyampholyte-Based Coreâ^'Shell Nanoparticles with <i>N</i> -Carboxyethylchitosan-Containing Core and Poly(ethylene oxide) Shell. Biomacromolecules, 2009, 10, 838-844.	5.4	12
51	Selfâ€assembly of <i>N</i> àâ€carboxyethylchitosan near the isoelectric point. Journal of Polymer Science Part A, 2008, 46, 6712-6721.	2.3	11
52	Synthesis of polymer-stabilized magnetic nanoparticles and fabrication of nanocomposite fibers thereof using electrospinning. European Polymer Journal, 2008, 44, 615-627.	5.4	43
53	Bicomponent aligned nanofibers of N-carboxyethylchitosan and poly(vinyl alcohol). European Polymer Journal, 2007, 43, 2809-2818.	5.4	44
54	Novel polyelectrolyte complexes between N-carboxyethylchitosan and synthetic polyelectrolytes. European Polymer Journal, 2006, 42, 858-868.	5.4	22

#	Article	IF	CITATION
55	Perspectives On: Criteria for Complex Evaluation of the Morphology and Alignment of Electrospun Polymer Nanofibers. Journal of Bioactive and Compatible Polymers, 2006, 21, 465-479.	2.1	75
56	Preparation of Polyelectrolyte-Containing Nanofibers by Electrospinning in the Presence of a Non-lonogenic Water-Soluble Polymer. Journal of Bioactive and Compatible Polymers, 2005, 20, 419-435.	2.1	65
57	Hydrogels from chitosan crosslinked with poly(ethylene glycol) diacid as bone regeneration materials. E-Polymers, 2004, 4, .	3.0	12
58	Degradation of chitosan in the presence of poly(vinyl alcohol) and poly(acrylic acid) by a crude enzyme complex from Trichoderma viride. E-Polymers, 2003, 3, .	3.0	2