Atul Grover

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2624193/publications.pdf Version: 2024-02-01

ATUL CROVER

#	Article	IF	CITATIONS
1	MicroRNAs: Potential Targets for Developing Stress-Tolerant Crops. Life, 2021, 11, 289.	2.4	20
2	Micro-array Analysis of ColdÂTolerant TomatoÂExpressing Nicotiana tabacum Osmotin. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2021, 91, 407-414.	1.0	0
3	Improvement in Seed Germination Through Pre-treatments in Timur (Zanthoxylum armatum DC.): A Plant with High Medicinal, Economical and Ecological Importance. The National Academy of Sciences, India, 2020, 43, 295-297.	1.3	7
4	Altered physiological responses of LlaNAC gene of Lepidium latifolium over-expressing tobacco plants. Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	2
5	Jatropha: From Seed to Plant, Seed, Oil, and Beyond. , 2019, , 323-346.		0
6	Salt and osmotic stress response ofÂtobacco plants overexpressing Lepidium latifolium L. RanÂGTPase gene. Indian Journal of Plant Physiology, 2018, 23, 494-498.	0.8	10
7	Containment evaluation, cold tolerance and toxicity analysis in Osmotin transgenic tomato (Solanum) Tj ETQq1 1	0.784314 2.2	4 rgBT /Over
8	Omics Approaches in Biofuel Technologies. , 2018, , 337-351.		4
9	Biofuels for Defence Use: Past, Present And Future. Defence Life Science Journal, 2018, 4, 3-11.	0.3	1
10	Repetitive Sequences in the Potato and Related Genomes. Compendium of Plant Genomes, 2017, , 143-160.	0.5	2
11	PCR-based Methods for Identification and Detection of Phytophthora infestans in Infected Leaves of Tomato. Defence Life Science Journal, 2017, 3, 41.	0.3	3
12	Biofuel Potential of Plants Transformed Genetically with NAC Family Genes. Frontiers in Plant Science, 2016, 7, 22.	3.6	16
13	Cross hybridization to Arabidopsis thaliana array reveals cold stress responsive genes in Lepidium latifolium. , 2016, , .		0
14	Development and use of molecular markers: past and present. Critical Reviews in Biotechnology, 2016, 36, 290-302.	9.0	224
15	Biochemical and physiological analysis of zinc tolerance in Jatropha curca. Journal of Experimental Biology and Agricultural Sciences, 2016, 4, 07-15.	0.4	2
16	Salinity Stress Tolerance Of Camelina Investigated <i>In Vitro</i> . Scientia Agriculturae Bohemica, 2015, 46, 137-144.	0.3	12
17	Overexpression of NAC gene from Lepidium latifolium L. enhances biomass, shortens life cycle and induces cold stress tolerance in tobacco: potential for engineering fourth generation biofuel crops. Molecular Biology Reports, 2014, 41, 7479-7489.	2.3	14
18	RNAi Mediated curcin precursor gene silencing in Jatropha (Jatropha curcas L.). Molecular Biology Reports, 2014, 41, 4305-4312.	2.3	19

Atul Grover

#	Article	IF	CITATIONS
19	Simple, Efficient and High-Throughput Method for Transgenic Confirmation. The National Academy of Sciences, India, 2014, 37, 87-90.	1.3	2
20	Analysis of Jatropha curcas transcriptome for oil enhancement and genic markers. Physiology and Molecular Biology of Plants, 2014, 20, 139-142.	3.1	19
21	Isolation and characterization of Ras-related GTP-binding protein (Ran) from Lepidium latifolium L. reveals its potential role in regulating abiotic stress tolerance. Acta Physiologiae Plantarum, 2014, 36, 2353-2360.	2.1	14
22	Overexpression of Ran gene from Lepidium latifolium L. (LlaRan) renders transgenic tobacco plants hypersensitive to cold stress. Molecular Biology Reports, 2014, 41, 5989-5996.	2.3	16
23	Isolation and functional characterization of DNA damage repair protein (DRT) from Lepidium latifolium L Comptes Rendus - Biologies, 2014, 337, 302-310.	0.2	12
24	Silenced Phytoene desaturase Gene as a Scorable Marker for Plant Genetic Transformation. Biotechnology, 2014, 13, 80-84.	0.1	1
25	Development of EST-SSR markers through data mining and their use for genetic diversity study in Indian accessions of Jatropha curcas L.: a potential energy crop. Genes and Genomics, 2013, 35, 661-670.	1.4	11
26	Cloning and characterization of GPAT gene from Lepidium latifolium L.: a step towards translational research in agri-genomics for food and fuel. Molecular Biology Reports, 2013, 40, 4235-4240.	2.3	16
27	Cold tolerance in Osmotin transgenic tomato (Solanum lycopersicum L.) is associated with modulation in transcript abundance of stress responsive genes. SpringerPlus, 2013, 2, 117.	1.2	46
28	DRE-binding transcription factor gene (LlaDREB1b) is regulated by various abiotic stresses in Lepidium latifolium L Molecular Biology Reports, 2013, 40, 2573-2580.	2.3	15
29	Semi-quantitative analysis of transcript accumulation in response to drought stress byLepidium latifoliumseedlings. Plant Signaling and Behavior, 2013, 8, e25388.	2.4	4
30	Bioenergy Crops Enter the Omics Era. , 2013, , 549-562.		1
31	In Silico Prediction of Drug Targets in Phytopathogenic Pseudomonas syringae pv. phaseolicola: Charting a Course for Agrigenomics Translation Research. OMICS A Journal of Integrative Biology, 2012, 16, 700-706.	2.0	8
32	Random genomic scans at microsatellite loci for genetic diversity estimation in cold-adaptedLepidium latifolium. Plant Genetic Resources: Characterisation and Utilisation, 2012, 10, 224-231.	0.8	3
33	Purifying Selection Bias against Microsatellites in Gene Rich Segmental Duplications in the Rice Genome. International Journal of Evolutionary Biology, 2012, 2012, 1-8.	1.0	1
34	Phylogenetic footprinting: a boost for microbial regulatory genomics. Protoplasma, 2012, 249, 901-907.	2.1	18
35	Female plants of Hippophae salicifolia D. Don are more responsive to cold stress than male plants. Physiology and Molecular Biology of Plants, 2012, 18, 377-380.	3.1	20
36	Isolation and characterization of cold responsive NAC gene from Lepidium latifolium. Molecular Biology Reports, 2012, 39, 9629-9638.	2.3	28

Atul Grover

#	Article	IF	CITATIONS
37	Searching microsatellites in DNA sequences: approaches used and tools developed. Physiology and Molecular Biology of Plants, 2012, 18, 11-19.	3.1	25
38	Identification of Abiotic Stress Responsive Genes from Indian High Altitude Lepidium latifolium L Defence Science Journal, 2012, 62, 315-318.	0.8	14
39	Tandem repetitions in transcriptomes of some Solanaceae species. American Journal of Molecular Biology, 2012, 02, 140-152.	0.3	4
40	In silico prediction of drug targets in Vibrio cholerae. Protoplasma, 2011, 248, 799-804.	2.1	11
41	Breaking seed dormancy in Hippophae salicifolia, a high value medicinal plant. Physiology and Molecular Biology of Plants, 2011, 17, 403-406.	3.1	24
42	Development of EST-based new SSR markers in seabuckthorn. Physiology and Molecular Biology of Plants, 2010, 16, 375-378.	3.1	30
43	Genome-wide analysis of conservation and divergence of microsatellites in rice. Molecular Genetics and Genomics, 2009, 282, 205-215.	2.1	12
44	Development of microsatellite markers in potato and their transferability in some members of Solanaceae. Physiology and Molecular Biology of Plants, 2009, 15, 343-358.	3.1	12
45	Nucleotide Composition and Amino Acid Usage in AT-Rich Hyperthermophilic Species. Open Bioinformatics Journal, 2008, 2, 11-19.	1.0	3
46	EuMicroSatdb: A database for microsatellites in the sequenced genomes of eukaryotes. BMC Genomics, 2007, 8, 225.	2.8	31
47	Mining microsatellites in eukaryotic genomes. Trends in Biotechnology, 2007, 25, 490-498.	9.3	236
48	Biased distribution of microsatellite motifs in the rice genome. Molecular Genetics and Genomics, 2007, 277, 469-480.	2.1	63
49	Microsatellite motifs with moderate GC content are clustered around genes on Arabidopsis thaliana chromosome 2. In Silico Biology, 2007, 7, 201-13.	0.9	11