
Buratini J Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2623782/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The putative roles of FSH and AMH in the regulation of oocyte developmental competence: from fertility prognosis to mechanisms underlying age-related subfertility. Human Reproduction Update, 2022, 28, 232-254.	5.2	19
2	Maternal age affects the relationship of basal FSH and anti-Müllerian hormone concentrations with post-ICSI/IVF live birth. Reproductive BioMedicine Online, 2021, 42, 748-756.	1.1	11
3	Faster fertilization and cleavage kinetics reflect competence to achieve a live birth after intracytoplasmic sperm injection, but this association fades with maternal age. Fertility and Sterility, 2021, 115, 665-672.	0.5	12
4	Recreating the Follicular Environment: A Customized Approach for In Vitro Culture of Bovine Oocytes Based on the Origin and Differentiation State. Methods in Molecular Biology, 2021, 2273, 1-15.	0.4	6
5	Bone morphogenetic protein 15 supplementation enhances cumulus expansion, nuclear maturation and progesterone production of in vitroâ€matured bovine cumulusâ€oocyte complexes. Reproduction in Domestic Animals, 2021, 56, 754-763.	0.6	4
6	Early embryo morphokinetics is a better predictor of post-ICSI live birth than embryo morphology: speed is more important than beauty at the cleavage stage. Zygote, 2021, 29, 495-502.	0.5	11
7	Sperm donation: an alternative to improve post-ICSI live birth rates in advanced maternal age patients. Human Reproduction, 2021, 36, 2148-2156.	0.4	5
8	OOCYTE SECRETED FACTORS REGULATE THE EXPRESSION OF INDUCERS OF THE OVULATORY CASCADE IN CUMULUS CELLS. Fertility and Sterility, 2021, 116, e109.	0.5	0
9	Physiological parameters related to oocyte nuclear differentiation for the improvement of IVM/IVF outcomes in women and cattle. Reproduction, Fertility and Development, 2021, 34, 27-35.	0.1	7
10	Characterization and control of oocyte large-scale chromatin configuration in different cattle breeds. Theriogenology, 2020, 141, 146-152.	0.9	9
11	OOCYTE SECRETED FACTORS REGULATE AND mRNA LEVELS IN CUMULUS CELLS. Fertility and Sterility, 2020, 114, e440.	0.5	2
12	Synchronization of germinal vesicle maturity improves efficacy of inÂvitro embryo production in Holstein cows. Theriogenology, 2020, 154, 53-58.	0.9	8
13	Exploring the pros and cons of new approaches for gamete cross-border donation based on fresh and vitrified oocytes. Facts, Views & Vision in ObGyn, 2020, 12, 111-118.	0.5	1
14	Maternal body mass index affects embryo morphokinetics: a time-lapse study. Journal of Assisted Reproduction and Genetics, 2019, 36, 1109-1116.	1.2	39
15	The first report of pregnancies following blastocyst automated vitrification in Europe. Journal of Gynecology Obstetrics and Human Reproduction, 2019, 48, 537-540.	0.6	11
16	Fibroblast growth factor 2 regulates cumulus differentiation under the control of the oocyte. Journal of Assisted Reproduction and Genetics, 2019, 36, 905-913.	1.2	19
17	Unlocking the mysteries of the cumulus-oocyte complex—a critical cellular partnership for developmental competence. Journal of Assisted Reproduction and Genetics, 2019, 36, 411-412.	1.2	0
18	Fibroblast growth factor 18 regulates steroidogenesis in fetal bovine ovarian tissue in vitro. Molecular Reproduction and Development, 2019, 86, 166-174.	1.0	7

Buratini J Jr

#	Article	IF	CITATIONS
19	Expression of fibroblast growth factor 22 (FGF22) and its receptor, FGFR1B, during development and regression of bovine corpus luteum. Theriogenology, 2019, 125, 1-5.	0.9	5
20	Evidence that fibroblast growth factor 10 plays a role in follicle selection in cattle. Reproduction, Fertility and Development, 2017, 29, 234.	0.1	9
21	Steroid hormones interact with natriuretic peptide C to delay nuclear maturation, to maintain oocyte–cumulus communication and to improve the quality of in vitro-produced embryos in cattle. Reproduction, Fertility and Development, 2017, 29, 2217.	0.1	25
22	Follicular environment and oocyte maturation: roles of local peptides and steroids. Animal Reproduction, 2017, 14, 601-606.	0.4	2
23	Effect of kit ligand on natriuretic peptide precursor C and oocyte maturation in cattle. Reproduction, 2016, 152, 481-489.	1.1	11
24	Localization of angiotensin receptor type 2 in fetal bovine ovaries. Animal Reproduction Science, 2016, 168, 34-39.	0.5	3
25	Follicle development and selection: past, present and future. Animal Reproduction, 2016, 13, 234-249.	0.4	21
26	Expression of m <scp>RNA</scp> Encoding the <scp>LH</scp> Receptor (<i><scp>LHR</scp></i>) and <scp>LHR</scp> Binding Protein in Granulosa Cells from <scp>N</scp> elore (<i><scp>B</scp>os) Tj ETQq0 0</i>	0 rg ₿ T¢/Ov€	erlosek 10 Tf 5
27	Fibroblast growth factor 17 and bone morphogenetic protein 15 enhance cumulus expansion and improve quality of inÂvitro –produced embryos in cattle. Theriogenology, 2015, 84, 390-398.	0.9	47
28	Effects of FGF10 on Bovine Oocyte Meiosis Progression, Apoptosis, Embryo Development and Relative Abundance of Developmentally Important Genes <i>In Vitro</i> . Reproduction in Domestic Animals, 2015, 50, 84-90.	0.6	15
29	Expression of fibroblast growth factor 10 and cognate receptors in the developing bovine ovary. Theriogenology, 2014, 81, 1268-1274.	0.9	15
30	Expression of receptors for BMP15 is differentially regulated in dominant and subordinate follicles during follicle deviation in cattle. Animal Reproduction Science, 2014, 144, 72-78.	0.5	29
31	Cryotolerance and global gene-expression patterns of Bos taurus indicus and Bos taurus taurus in vitro- and in vivo-produced blastocysts. Reproduction, Fertility and Development, 2014, 26, 1129.	0.1	35
32	Bone morphogenetic protein 15 and fibroblast growth factor 10 enhance cumulus expansion, glucose uptake, and expression of genes in the ovulatory cascade during in vitro maturation of bovine cumulus–oocyte complexes. Reproduction, 2013, 146, 27-35.	1.1	78
33	Effects of FSH on the expression of receptors for oocyte-secreted factors and members of the EGF-like family during in vitro maturation in cattle. Reproduction, Fertility and Development, 2013, 25, 890.	0.1	39
34	FGF10 inhibits dominant follicle growth and estradiol secretion in vivo in cattle. Reproduction, 2012, 143, 815-823.	1.1	30
35	Ovulation rate and its relationship with follicle diameter and gene expression of the LH receptor (LHR) in Nelore cows. Theriogenology, 2012, 77, 139-147.	0.9	24
36	Single nucleotide polymorphisms in the bovine genome are associated with the number of oocytes collected during ovum pick up. Animal Reproduction Science, 2012, 134, 141-149.	0.5	13

Buratini J Jr

#	Article	IF	CITATIONS
37	Vascular endothelial growth factor A (VEGFA) modulates bovine placenta steroidogenesis inÂvitro. Placenta, 2012, 33, 788-794.	0.7	11
38	The fibroblast growth factor family: involvement in the regulation of folliculogenesis. Reproduction, Fertility and Development, 2012, 24, 905.	0.1	49
39	Fibroblast growth factor-2 regulation of sprouty and NR4A genes in bovine ovarian granulosa cells. Journal of Cellular Physiology, 2011, 226, 1820-1827.	2.0	34
40	Messenger ribonucleic acid abundance of intestinal enzymes and transporters in feed-restricted and refed restricted and refed chickens at different ages. Poultry Science, 2011, 90, 863-868.	1.5	12
41	Expression and Function of Fibroblast Growth Factor 18 in the Ovarian Follicle in Cattle1. Biology of Reproduction, 2010, 83, 339-346.	1.2	54
42	Fibroblast growth factor-10 maintains the survival and promotes the growth of cultured goat preantral follicles. Domestic Animal Endocrinology, 2010, 39, 249-258.	0.8	16
43	Regulation and action of fibroblast growth factor 17 in bovine follicles. Journal of Endocrinology, 2009, 202, 347-353.	1.2	47
44	Immunohistochemical Detection of Receptors for Oestrogen and Progesterone in Endometrial Glands and Stroma during the Oestrous Cycle in Nelore (<i>Bos taurus indicus</i>) Cows. Reproduction in Domestic Animals, 2008, 43, 415-421.	0.6	16
45	Expression of fibroblast growth factor receptors during development and regression of the bovine corpus luteum. Reproduction, Fertility and Development, 2008, 20, 659.	0.1	13
46	Expression and Function of Fibroblast Growth Factor 10 and Its Receptor, Fibroblast Growth Factor Receptor 2B, in Bovine Follicles1. Biology of Reproduction, 2007, 77, 743-750.	1.2	92
47	α1-Adrenoceptors in proximal segments of tail arteries from control and reserpinised rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2007, 376, 117-126.	1.4	8
48	Differential Distribution of Functional α1-Adrenergic Receptor Subtypes along the Rat Tail Artery. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 753-761.	1.3	15
49	Expression of fibroblast growth factor-8 and regulation of cognate receptors, fibroblast growth factor receptor-3c and -4, in bovine antral follicles. Reproduction, 2005, 130, 343-350.	1.1	89
50	Effects of dominant follicle aspiration and treatment with recombinant bovine somatotropin (BST) on ovarian follicular development in Nelore (Bos indicus) heifers. Theriogenology, 2000, 54, 421-431.	0.9	43
51	Effect of dominant follicle aspiration and treatment with recombinant bovine somatotropin on follicular dynamics in nelore heifers. Theriogenology, 1999, 51, 402.	0.9	1
52	Follicular dynamics in Mangalarga mares. Equine Veterinary Journal, 1997, 29, 7-11.	0.9	5
53	Cryopreservation of equine embryos with glycerol plus sucrose and glycerol plus 1,2â€propanediol. Equine Veterinary Journal, 1997, 29, 88-93.	0.9	6