Vittorio Calabrese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2623746/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nature Reviews Neuroscience, 2007, 8, 766-775.	4.9	1,208
2	Cellular Stress Responses, The Hormesis Paradigm, and Vitagenes: Novel Targets for Therapeutic Intervention in Neurodegenerative Disorders. Antioxidants and Redox Signaling, 2010, 13, 1763-1811.	2.5	649
3	Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia. Journal of the Neurological Sciences, 2005, 233, 145-162.	0.3	361
4	Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 753-783.	1.8	351
5	Nutritional approaches to combat oxidative stress in Alzheimer's disease. Journal of Nutritional Biochemistry, 2002, 13, 444-461.	1.9	343
6	Caffeic Acid Phenethyl Ester and Curcumin: A Novel Class of Heme Oxygenase-1 Inducers. Molecular Pharmacology, 2002, 61, 554-561.	1.0	288
7	Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Frontiers in Bioscience - Landmark, 2007, 12, 1107.	3.0	274
8	Healthy Effects of Plant Polyphenols: Molecular Mechanisms. International Journal of Molecular Sciences, 2020, 21, 1250.	1.8	265
9	NO synthase and NO-dependent signal pathways in brain aging and neurodegenerative disorders: the role of oxidant/antioxidant balance. Neurochemical Research, 2000, 25, 1315-1341.	1.6	262
10	Traumatic Brain Injury: Oxidative Stress and Neuroprotection. Antioxidants and Redox Signaling, 2013, 19, 836-853.	2.5	261
11	Cellular Stress Response: A Novel Target for Chemoprevention and Nutritional Neuroprotection in Aging, Neurodegenerative Disorders and Longevity. Neurochemical Research, 2008, 33, 2444-2471.	1.6	259
12	Ferulic acid ethyl ester protects neurons against amyloid beta- peptide(1-42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity. Journal of Neurochemistry, 2005, 92, 749-758.	2.1	255
13	Aging and Parkinson's Disease: Inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radical Biology and Medicine, 2018, 115, 80-91.	1.3	255
14	Ferulic acid and its therapeutic potential as a hormetin for age-related diseases. Biogerontology, 2009, 10, 97-108.	2.0	253
15	Free radicals and brain aging. Clinics in Geriatric Medicine, 2004, 20, 329-359.	1.0	252
16	Endothelial Heme Oxygenase-1 Induction by Hypoxia. Journal of Biological Chemistry, 2000, 275, 13613-13620.	1.6	241
17	Mitochondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disorders and longevity. Neurochemical Research, 2001, 26, 739-764.	1.6	238
18	Redox Regulation of Cellular Stress Response in Aging and Neurodegenerative Disorders: Role of Vitagenes. Neurochemical Research, 2007, 32, 757-773.	1.6	219

#	Article	IF	CITATIONS
19	Nitrosative Stress, Cellular Stress Response, and Thiol Homeostasis in Patients with Alzheimer's Disease. Antioxidants and Redox Signaling, 2006, 8, 1975-1986.	2.5	215
20	Resveratrol commonly displays hormesis: Occurrence and biomedical significance. Human and Experimental Toxicology, 2010, 29, 980-1015.	1.1	210
21	Free Radicals: Key to Brain Aging and Heme Oxygenase as a Cellular Response to Oxidative Stress. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2004, 59, M478-M493.	1.7	192
22	Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Molecular Aspects of Medicine, 2011, 32, 279-304.	2.7	192
23	Nitric Oxide in Cell Survival: A Janus Molecule. Antioxidants and Redox Signaling, 2009, 11, 2717-2739.	2.5	184
24	Curcumin Activates Defensive Genes and Protects Neurons Against Oxidative Stress. Antioxidants and Redox Signaling, 2006, 8, 395-403.	2.5	178
25	Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress: A nutritional approach. Amino Acids, 2003, 25, 437-444.	1.2	165
26	Increased expression of heat shock proteins in rat brain during aging: relationship with mitochondrial function and glutathione redox state. Mechanisms of Ageing and Development, 2004, 125, 325-335.	2.2	161
27	Acetylcarnitine induces heme oxygenase in rat astrocytes and protects against oxidative stress: Involvement of the transcription factor Nrf2. Journal of Neuroscience Research, 2005, 79, 509-521.	1.3	158
28	Mitochondrial associated metabolic proteins are selectively oxidized in A30P α-synuclein transgenic mice—a model of familial Parkinson's disease. Neurobiology of Disease, 2005, 18, 492-498.	2.1	157
29	Proteomic Analysis of Protein Expression and Oxidative Modification in R6/2 Transgenic Mice. Molecular and Cellular Proteomics, 2005, 4, 1849-1861.	2.5	156
30	Ethyl Ferulate, a Lipophilic Polyphenol, Induces HO-1 and Protects Rat Neurons Against Oxidative Stress. Antioxidants and Redox Signaling, 2004, 6, 811-818.	2.5	151
31	Gene expression profiles of heme oxygenase isoforms in the rat brain. Brain Research, 2002, 954, 51-59.	1.1	144
32	Nitric oxide synthase is present in the cerebrospinal fluid of patients with active multiple sclerosis and is associated with increases in cerebrospinal fluid protein nitrotyrosine and S-nitrosothiols and with changes in glutathione levels. Journal of Neuroscience Research, 2002, 70, 580-587.	1.3	144
33	The Hormetic Role of Dietary Antioxidants in Free Radical-Related Diseases. Current Pharmaceutical Design, 2010, 16, 877-883.	0.9	142
34	Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice-A model of familial amyotrophic lateral sclerosis. Free Radical Biology and Medicine, 2005, 38, 960-968.	1.3	141
35	Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 729-736.	1.8	140
36	Absence of Response to Early Transcranial Magnetic Stimulation in Ischemic Stroke Patients. Stroke, 1999, 30, 2666-2670.	1.0	138

#	Article	IF	CITATIONS
37	Curcumin and the cellular stress response in free radicalâ€related diseases. Molecular Nutrition and Food Research, 2008, 52, 1062-1073.	1.5	138
38	Vitamin E and Neurodegenerative Disorders Associated with Oxidative Stress. Nutritional Neuroscience, 2002, 5, 229-239.	1.5	136
39	Natural antioxidants in Alzheimer's disease. Expert Opinion on Investigational Drugs, 2007, 16, 1921-1931.	1.9	136
40	Poor cognitive ageing: Vulnerabilities, mechanisms and the impact of nutritional interventions. Ageing Research Reviews, 2018, 42, 40-55.	5.0	136
41	Acetyl-L-carnitine-induced up-regulation of heat shock proteins protects cortical neurons against amyloid-beta peptide 1–42-mediated oxidative stress and neurotoxicity: Implications for Alzheimer's disease. Journal of Neuroscience Research, 2006, 84, 398-408.	1.3	135
42	Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosis. Free Radical Biology and Medicine, 2005, 39, 453-462.	1.3	129
43	Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases. Frontiers in Bioscience - Landmark, 2009, Volume, 376.	3.0	129
44	Redox Homeostasis and Cellular Stress Response in Aging and Neurodegeneration. Methods in Molecular Biology, 2010, 610, 285-308.	0.4	129
45	Oxidative stress and cellular stress response in diabetic nephropathy. Cell Stress and Chaperones, 2007, 12, 299.	1.2	125
46	Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer's disease and Alzheimer-linked pathologies: modulation by nutritional mushrooms. Immunity and Ageing, 2018, 15, 8.	1.8	123
47	Antisense directed at the AÎ ² region of APP decreases brain oxidative markers in aged senescence accelerated mice. Brain Research, 2004, 1018, 86-96.	1.1	121
48	Inflammasomes, hormesis, and antioxidants in neuroinflammation: Role of NRLP3 in Alzheimer disease. Journal of Neuroscience Research, 2017, 95, 1360-1372.	1.3	120
49	Proteomics analysis provides insight into caloric restriction mediated oxidation and expression of brain proteins associated with age-related impaired cellular processes: Mitochondrial dysfunction, glutamate dysregulation and impaired protein synthesis. Neurobiology of Aging, 2006, 27, 1020-1034.	1.5	119
50	In vivo protective effects of ferulic acid ethyl ester against amyloid-beta peptide 1–42-induced oxidative stress. Journal of Neuroscience Research, 2006, 84, 418-426.	1.3	119
51	Cannabinoid receptor agonists are mitochondrial inhibitors: A unified hypothesis of how cannabinoids modulate mitochondrial function and induce cell death. Biochemical and Biophysical Research Communications, 2007, 364, 131-137.	1.0	119
52	Vitagenes, cellular stress response, and acetylcarnitine: Relevance to hormesis. BioFactors, 2009, 35, 146-160.	2.6	118
53	What is hormesis and its relevance to healthy aging and longevity?. Biogerontology, 2015, 16, 693-707.	2.0	116
54	Acetylcarnitine and cellular stress response: roles in nutritional redox homeostasis and regulation of longevity genes. Journal of Nutritional Biochemistry, 2006, 17, 73-88.	1.9	115

#	Article	IF	CITATIONS
55	In vivo protection of synaptosomes by ferulic acid ethyl ester (FAEE) from oxidative stress mediated by 2,2-azobis(2-amidino-propane)dihydrochloride (AAPH) or Fe2+/H2O2: Insight into mechanisms of neuroprotection and relevance to oxidative stress-related neurodegenerative disorders. Neurochemistry International, 2006, 48, 318-327.	1.9	114
56	Hormesis: why it is important to biogerontologists. Biogerontology, 2012, 13, 215-235.	2.0	113
57	Redox Regulation of Heat Shock Protein Expression by Signaling Involving Nitric Oxide and Carbon Monoxide: Relevance to Brain Aging, Neurodegenerative Disorders, and Longevity. Antioxidants and Redox Signaling, 2006, 8, 444-477.	2.5	112
58	Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immunity and Ageing, 2015, 12, 20.	1.8	111
59	Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: the role of vitagenes. In Vivo, 2004, 18, 245-67.	0.6	111
60	Neuroprotective features of carnosine in oxidative driven diseases. Molecular Aspects of Medicine, 2011, 32, 258-266.	2.7	110
61	Healthspan Maintenance and Prevention of Parkinson's-like Phenotypes with Hydroxytyrosol and Oleuropein Aglycone in C. elegans. International Journal of Molecular Sciences, 2020, 21, 2588.	1.8	110
62	Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: Mitochondria as a "chi― Immunity and Ageing, 2013, 10, 15.	1.8	107
63	Elevation of mitochondrial glutathione by ?-glutamylcysteine ethyl ester protects mitochondria against peroxynitrite-induced oxidative stress. Journal of Neuroscience Research, 2003, 74, 917-927.	1.3	105
64	Bilirubin: an endogenous scavenger of nitric oxide and reactive nitrogen species. Redox Report, 2006, 11, 207-213.	1.4	102
65	Major pathogenic mechanisms in vascular dementia: Roles of cellular stress response and hormesis in neuroprotection. Journal of Neuroscience Research, 2016, 94, 1588-1603.	1.3	101
66	Anti-inflammatory and Anti-oxidant Activity of Hidrox® in Rotenone-Induced Parkinson's Disease in Mice. Antioxidants, 2020, 9, 824.	2.2	101
67	Redox proteomics in aging rat brain: Involvement of mitochondrial reduced glutathione status and mitochondrial protein oxidation in the aging process. Journal of Neuroscience Research, 2010, 88, 3498-3507.	1.3	99
68	The Effects of Italian Mediterranean Organic Diet (IMOD) on Health Status. Current Pharmaceutical Design, 2010, 16, 814-824.	0.9	98
69	Hormesis. Human and Experimental Toxicology, 2013, 32, 120-152.	1.1	98
70	Proteomics Analyses of Specific Protein Oxidation and Protein Expression in Aged Rat Brain and Its Modulation by L-Acetylcarnitine: Insights Into the Mechanisms of Action of This Proposed Therapeutic Agent for CNS Disorders Associated with Oxidative Stress. Antioxidants and Redox Signaling, 2006, 8, 381-394.	2.5	96
71	HSF1-Dependent Upregulation of Hsp70 by Sulfhydryl-Reactive Inducers of the KEAP1/NRF2/ARE Pathway. Chemistry and Biology, 2011, 18, 1355-1361.	6.2	96
72	Nitric oxide synthase induction in astroglial cell cultures: Effect on heat shock protein 70 synthesis and oxidant/antioxidant balance. , 2000, 60, 613-622.		95

#	Article	IF	CITATIONS
73	Redox Regulation in Neurodegeneration and Longevity: Role of the Heme Oxygenase and HSP70 Systems in Brain Stress Tolerance. Antioxidants and Redox Signaling, 2004, 6, 895-913.	2.5	95
74	Oxidative Stress, Redox Homeostasis and Cellular Stress Response in Ménière's Disease: Role of Vitagenes. Neurochemical Research, 2010, 35, 2208-2217.	1.6	91
75	Redox regulation of cellular stress response by ferulic acid ethyl ester in human dermal fibroblasts: role of vitagenes. Clinics in Dermatology, 2008, 26, 358-363.	0.8	90
76	Curcumin, Hormesis and the Nervous System. Nutrients, 2019, 11, 2417.	1.7	89
77	Regional distribution of heme oxygenase, HSP70, and glutathione in brain: Relevance for endogenous oxidant/antioxidant balance and stress tolerance. Journal of Neuroscience Research, 2002, 68, 65-75.	1.3	88
78	Stress Proteins and SH-Groups in Oxidant-Induced Cellular Injury After Chronic Ethanol Administration in Rat. Free Radical Biology and Medicine, 1998, 24, 1159-1167.	1.3	87
79	HSP70 Induction in the Brain Following Ethanol Administration in the Rat: Regulation by Glutathione Redox State. Biochemical and Biophysical Research Communications, 2000, 269, 397-400.	1.0	86
80	Nuclear DNA strand breaks during ethanol-induced oxidative stress in rat brain. FEBS Letters, 1996, 390, 153-156.	1.3	83
81	Bilirubin as an endogenous modulator of neurotrophin redox signaling. Journal of Neuroscience Research, 2008, 86, 2235-2249.	1.3	81
82	Disruption of thiol homeostasis and nitrosative stress in the cerebrospinal fluid of patients with active multiple sclerosis: evidence for a protective role of acetylcarnitine. Neurochemical Research, 2003, 28, 1321-1328.	1.6	79
83	Healthspan Enhancement by Olive Polyphenols in C. elegans Wild Type and Parkinson's Models. International Journal of Molecular Sciences, 2020, 21, 3893.	1.8	78
84	Stress proteins and SH-groups in oxidant-induced cell damage after acute ethanol administration in rat. Free Radical Biology and Medicine, 1996, 20, 391-397.	1.3	76
85	Hormetic approaches to the treatment of Parkinson's disease: Perspectives and possibilities. Journal of Neuroscience Research, 2018, 96, 1641-1662.	1.3	75
86	Friedreich's Ataxia: From Disease Mechanisms to Therapeutic Interventions. Antioxidants and Redox Signaling, 2006, 8, 438-443.	2.5	71
87	Cellular Stress Responses, Mitostress and Carnitine Insufficiencies as Critical Determinants in Aging and Neurodegenerative Disorders: Role of Hormesis and Vitagenes. Neurochemical Research, 2010, 35, 1880-1915.	1.6	71
88	Protective Effect of Carnosine During Nitrosative Stress in Astroglial Cell Cultures. Neurochemical Research, 2005, 30, 797-807.	1.6	67
89	Hormesis as a mechanistic approach to understanding herbal treatments in traditional Chinese medicine. , 2018, 184, 42-50.		63
90	Nutritional antioxidants and the heme oxygenase pathway of stress tolerance: novel targets for neuroprotection in Alzheimer's disease. Italian Journal of Biochemistry, 2003, 52, 177-81.	0.3	63

#	Article	IF	CITATIONS
91	Redox Modulation of Heat Shock Protein Expression by Acetylcarnitine in Aging Brain: Relationship to Antioxidant Status and Mitochondrial Function. Antioxidants and Redox Signaling, 2006, 8, 404-416.	2.5	62
92	Redox modulation of cellular stress response and lipoxin A4 expression by Hericium Erinaceus in rat brain: relevance to Alzheimer's disease pathogenesis. Immunity and Ageing, 2016, 13, 23.	1.8	61
93	HORMESIS: A Fundamental Concept with Widespread Biological and Biomedical Applications. Gerontology, 2016, 62, 530-535.	1.4	60
94	Ferulic Acid Regulates the Nrf2/Heme Oxygenase-1 System and Counteracts Trimethyltin-Induced Neuronal Damage in the Human Neuroblastoma Cell Line SH-SY5Y. Frontiers in Pharmacology, 2015, 6, 305.	1.6	59
95	Heme oxygenase and cyclooxygenase in the central nervous system: A functional interplay. Journal of Neuroscience Research, 2006, 84, 1385-1391.	1.3	58
96	Administration of carnosine in the treatment of acute spinal cord injury. Biochemical Pharmacology, 2011, 82, 1478-1489.	2.0	57
97	Sex hormonal regulation and hormesis in aging and longevity: role of vitagenes. Journal of Cell Communication and Signaling, 2014, 8, 369-384.	1.8	57
98	Redox modulation of cellular stress response and lipoxin A4 expression by Coriolus versicolor in rat brain: Relevance to Alzheimer's disease pathogenesis. NeuroToxicology, 2016, 53, 350-358.	1.4	57
99	Protective Actions of Anserine Under Diabetic Conditions. International Journal of Molecular Sciences, 2018, 19, 2751.	1.8	57
100	Molecular Chaperones and Their Roles in Neural Cell Differentiation. Developmental Neuroscience, 2002, 24, 1-13.	1.0	56
101	In vivo protection by the xanthate tricyclodecan-9-yl-xanthogenate against amyloid β-peptide (1–42)-induced oxidative stress. Neuroscience, 2006, 138, 1161-1170.	1.1	56
102	In vivo induction of heat shock proteins in the substantia nigra following L-DOPA administration is associated with increased activity of mitochondrial complex I and nitrosative stress in rats: regulation by glutathione redox state. Journal of Neurochemistry, 2007, 101, 709-717.	2.1	56
103	Cellular stress response, sirtuins and UCP proteins in Alzheimer disease: role of vitagenes. Immunity and Ageing, 2013, 10, 41.	1.8	56
104	Osteoporosis and alzheimer pathology: Role of cellular stress response and hormetic redox signaling in aging and bone remodeling. Frontiers in Pharmacology, 2014, 5, 120.	1.6	56
105	Nutrition and the ageing brain: Moving towards clinical applications. Ageing Research Reviews, 2020, 62, 101079.	5.0	56
106	Carnosinase Levels in Aging Brain: Redox State Induction and Cellular Stress Response. Antioxidants and Redox Signaling, 2009, 11, 2759-2775.	2.5	55
107	GABAâ€containing compound gammapyrone protects against brain impairments in Alzheimer's disease model male rats and prevents mitochondrial dysfunction in cell culture. Journal of Neuroscience Research, 2019, 97, 708-726.	1.3	55
108	Body Composition and -174G/C Interleukin-6 Promoter Gene Polymorphism: Association with Progression of Insulin Resistance in Normal Weight Obese Syndrome. Current Pharmaceutical Design, 2008, 14, 2699-2706.	0.9	54

#	Article	IF	CITATIONS
109	Oxidative Damage in Rat Brain During Aging: Interplay Between Energy and Metabolic Key Target Proteins. Neurochemical Research, 2010, 35, 2184-2192.	1.6	53
110	Redox regulation of cellular stress response in multiple sclerosis. Biochemical Pharmacology, 2011, 82, 1490-1499.	2.0	53
111	Regional Rat Brain Distribution of Heme Oxygenase-1 and Manganese Superoxide Dismutase mRNA: Relevance of Redox Homeostasis in the Aging Processes. Experimental Biology and Medicine, 2003, 228, 517-524.	1.1	49
112	Cellular stress response, redox status, and vitagenes in glaucoma: a systemic oxidant disorder linked to Alzheimer's disease. Frontiers in Pharmacology, 2014, 5, 129.	1.6	49
113	Hormesis and Ginkgo biloba (GB): Numerous biological effects of GB are mediated via hormesis. Ageing Research Reviews, 2020, 64, 101019.	5.0	49
114	Carbon Monoxide: from Poison to Clinical Trials. Trends in Pharmacological Sciences, 2021, 42, 329-339.	4.0	46
115	Redox regulation of cellular stress response in neurodegenerative disorders. Italian Journal of Biochemistry, 2006, 55, 263-82.	0.3	46
116	Proteomics analysis of human astrocytes expressing the HIV protein Tat. Molecular Brain Research, 2005, 133, 307-316.	2.5	42
117	Dose response biology: The case of resveratrol. Human and Experimental Toxicology, 2010, 29, 1034-1037.	1.1	42
118	Effects of apolipoprotein E on the human immunodeficiency virus protein tat in neuronal cultures and synaptosomes. Journal of Neuroscience Research, 2004, 77, 532-539.	1.3	41
119	â~'174G/C IL-6 gene promoter polymorphism predicts therapeutic response to TNF-α blockers. Pharmacogenetics and Genomics, 2012, 22, 134-142.	0.7	41
120	Nutritional Mushroom Treatment in Meniere's Disease with Coriolus versicolor: A Rationale for Therapeutic Intervention in Neuroinflammation and Antineurodegeneration. International Journal of Molecular Sciences, 2020, 21, 284.	1.8	41
121	Gene–Environment Interactions in Developmental Neurotoxicity: a Case Study of Synergy between Chlorpyrifos and CHD8 Knockout in Human BrainSpheres. Environmental Health Perspectives, 2021, 129, 77001.	2.8	41
122	Ethyl Ferulate, a Lipophilic Polyphenol, Induces HO-1 and Protects Rat Neurons Against Oxidative Stress. Antioxidants and Redox Signaling, 2004, 6, 811-818.	2.5	41
123	Reduction of arthritic symptoms by low dose radiation therapy (LD-RT) is associated with an anti-inflammatory phenotype. International Journal of Radiation Biology, 2013, 89, 278-286.	1.0	40
124	Hormesis, cellular stress response, and redox homeostasis in autism spectrum disorders. Journal of Neuroscience Research, 2016, 94, 1488-1498.	1.3	39
125	Hidrox® Counteracts Cyclophosphamide-Induced Male Infertility through NRF2 Pathways in a Mouse Model. Antioxidants, 2021, 10, 778.	2.2	39
126	Hormesis, cellular stress response and neuroinflammation in schizophrenia: Early onset versus late onset state. Journal of Neuroscience Research, 2017, 95, 1182-1193.	1.3	38

#	Article	IF	CITATIONS
127	Hydrogen Sulfide and Carnosine: Modulation of Oxidative Stress and Inflammation in Kidney and Brain Axis. Antioxidants, 2020, 9, 1303.	2.2	37
128	Therapeutic Potential of Dietary Polyphenols against Brain Ageing and Neurodegenerative Disorders. Advances in Experimental Medicine and Biology, 2010, 698, 27-35.	0.8	36
129	Epigenetic nutraceutical diets in Alzheimer's disease. Journal of Nutrition, Health and Aging, 2014, 18, 800-805.	1.5	36
130	Environment and Male Fertility: Effects of Benzo-α-Pyrene and Resveratrol on Human Sperm Function In Vitro. Journal of Clinical Medicine, 2019, 8, 561.	1.0	36
131	Low dose radiation therapy (LD-RT) is effective in the treatment of arthritis: Animal model findings. International Journal of Radiation Biology, 2013, 89, 287-294.	1.0	35
132	Oxidatively-modified and glycated proteins as candidate pro-inflammatory toxins in uremia and dialysis patients. Amino Acids, 2007, 32, 573-592.	1.2	34
133	Practical Approaches to Investigate Redox Regulation of Heat Shock Protein Expression and Intracellular Glutathione Redox State. Methods in Enzymology, 2008, 441, 83-110.	0.4	34
134	Analytical approaches to the diagnosis and treatment of aging and aging-related disease: redox status and proteomics. Free Radical Research, 2015, 49, 511-524.	1.5	34
135	Does Green Tea Induce Hormesis?. Dose-Response, 2020, 18, 155932582093617.	0.7	34
136	The role of hormesis in the functional performance and protection of neural systems. Brain Circulation, 2017, 3, 1.	0.7	34
137	Astaxanthin as a Modulator of Nrf2, NF-κB, and Their Crosstalk: Molecular Mechanisms and Possible Clinical Applications. Molecules, 2022, 27, 502.	1.7	34
138	Enhanced Laccase Production in White-Rot Fungus Rigidoporus lignosus by the Addition of Selected Phenolic and Aromatic Compounds. Applied Biochemistry and Biotechnology, 2011, 163, 415-422.	1.4	32
139	Liver X receptors activation, through TO901317 binding, reduces neuroinflammation in Parkinson's disease. PLoS ONE, 2017, 12, e0174470.	1.1	32
140	Hericium Erinaceus Prevents DEHP-Induced Mitochondrial Dysfunction and Apoptosis in PC12 Cells. International Journal of Molecular Sciences, 2020, 21, 2138.	1.8	32
141	Oxidative damage and amyloidâ€Î² metabolism in brain regions of the longestâ€lived rodents. Journal of Neuroscience Research, 2014, 92, 195-205.	1.3	31
142	Hormesis: A potential strategic approach to the treatment of neurodegenerative disease. International Review of Neurobiology, 2020, 155, 271-301.	0.9	30
143	Antiaging Medicine: Antioxidants and Aging. Antioxidants and Redox Signaling, 2006, 8, 362-364.	2.5	29
144	Dose response biology of resveratrol in obesity. Journal of Cell Communication and Signaling, 2014, 8, 385-391.	1.8	29

#	Article	IF	CITATIONS
145	Effect of di(2-ethylhexyl) phthalate on Nrf2-regulated glutathione homeostasis in mouse kidney. Cell Stress and Chaperones, 2020, 25, 919-928.	1.2	29
146	Hericium erinaceus and Coriolus versicolor Modulate Molecular and Biochemical Changes after Traumatic Brain Injury. Antioxidants, 2021, 10, 898.	2.2	28
147	Ferulic acid and hormesis: Biomedical and environmental implications. Mechanisms of Ageing and Development, 2021, 198, 111544.	2.2	28
148	Altered expression pattern of Nrf2/HO-1 axis during accelerated-senescence in HIV-1 transgenic rat. Biogerontology, 2014, 15, 449-461.	2.0	27
149	Effect of nitric oxide synthase induction on the expression of mitochondrial respiratory chain enzyme subunits in mixed cortical and astroglial cell cultures. Biochimie, 1998, 80, 871-881.	1.3	26
150	Formation of Propionate After Short-Term Ethanol Treatment and Its Interaction with the Carnitine Pool in Rat. Alcohol, 1999, 19, 169-176.	0.8	26
151	Upregulation of neuronal nitric oxide synthase in in vitro stellate astrocytes and in vivo reactive astrocytes after electrically induced status epilepticus. Neurochemical Research, 2003, 28, 607-615.	1.6	26
152	Key Mechanisms and Potential Implications of Hericium erinaceus in NLRP3 Inflammasome Activation by Reactive Oxygen Species during Alzheimer's Disease. Antioxidants, 2021, 10, 1664.	2.2	26
153	Resveratrol protects against homocysteineâ€induced cell damage via cell stress response in neuroblastoma cells. Journal of Neuroscience Research, 2015, 93, 149-156.	1.3	25
154	Elemental mercury neurotoxicity and clinical recovery of function: A review of findings, and implications for occupational health. Environmental Research, 2018, 163, 134-148.	3.7	23
155	Luteolin and hormesis. Mechanisms of Ageing and Development, 2021, 199, 111559.	2.2	23
156	Carnosine Activates Cellular Stress Response in Podocytes and Reduces Glycative and Lipoperoxidative Stress. Biomedicines, 2020, 8, 177.	1.4	22
157	Moringa oleifera Protects SH-SY5YCells from DEHP-Induced Endoplasmic Reticulum Stress and Apoptosis. Antioxidants, 2021, 10, 532.	2.2	22
158	Hidrox® Roles in Neuroprotection: Biochemical Links between Traumatic Brain Injury and Alzheimer's Disease. Antioxidants, 2021, 10, 818.	2.2	22
159	Redox modulation by plant polyphenols targeting vitagenes for chemoprevention and therapy: Relevance to novel anti-cancer interventions and mini-brain organoid technology. Free Radical Biology and Medicine, 2022, 179, 59-75.	1.3	22
160	Chronic exposure to high leucine impairs glucose-induced insulin release by lowering the ATP-to-ADP ratio. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E1082-E1087.	1.8	20
161	Allosteric inhibition of carnosinase (CN1) by inducing a conformational shift. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1102-1110.	2.5	20
162	Hidrox® and Endometriosis: Biochemical Evaluation of Oxidative Stress and Pain. Antioxidants, 2021, 10, 720.	2.2	20

#	Article	IF	CITATIONS
163	Effects of L-carnitine on the formation of fatty acid ethyl esters in brain and peripheral organs after short-term ethanol administration in rat. Neurochemical Research, 1999, 24, 79-84.	1.6	18
164	Redox modulation of vitagenes via plant polyphenols and vitamin D: Novel insights for chemoprevention and therapeutic interventions based on organoid technology. Mechanisms of Ageing and Development, 2021, 199, 111551.	2.2	18
165	Redox Regulation in Neurodegeneration and Longevity: Role of the Heme Oxygenase and HSP70 Systems in Brain Stress Tolerance. Antioxidants and Redox Signaling, 2004, 6, 895-913.	2.5	18
166	Demonstrated hormetic mechanisms putatively subserve riluzole-induced effects in neuroprotection against amyotrophic lateral sclerosis (ALS): Implications for research and clinical practice. Ageing Research Reviews, 2021, 67, 101273.	5.0	17
167	NO, CO and H2S: A trinacrium of bioactive gases in the brain. Biochemical Pharmacology, 2022, 202, 115122.	2.0	17
168	Regional distribution of malonaldehyde in mouse brain. Biochemical Pharmacology, 1988, 37, 2287-2288.	2.0	16
169	Hidrox® and Chronic Cystitis: Biochemical Evaluation of Inflammation, Oxidative Stress, and Pain. Antioxidants, 2021, 10, 1046.	2.2	16
170	Effects of acetyl-L-carnitine on the formation of fatty acid ethyl esters in brain and peripheral organs after short-term ethanol administration in rat. Neurochemical Research, 2001, 26, 167-174.	1.6	15
171	Experimental Research on Nitric Oxide and the Therapy of Alzheimer Disease: A Challenging Bridge. CNS and Neurological Disorders - Drug Targets, 2011, 10, 766-776.	0.8	15
172	Melaleuca styphelioides Sm. Polyphenols Modulate Interferon Gamma/Histamine-Induced Inflammation in Human NCTC 2544 Keratinocytes. Molecules, 2018, 23, 2526.	1.7	15
173	Di (2â€ethylhexyl) phthalate targets the thioredoxin system and the oxidative branch of the pentose phosphate pathway in liver of Balb/c mice. Environmental Toxicology, 2020, 35, 78-86.	2.1	15
174	Metformin-enhances resilience via hormesis. Ageing Research Reviews, 2021, 71, 101418.	5.0	15
175	S-Acetyl-Glutathione Attenuates Carbon Tetrachloride-Induced Liver Injury by Modulating Oxidative Imbalance and Inflammation. International Journal of Molecular Sciences, 2022, 23, 4429.	1.8	15
176	Involvement of ELAV RNA-binding proteins in the post-transcriptional regulation of HO-1. Frontiers in Cellular Neuroscience, 2014, 8, 459.	1.8	14
177	Increased formation of short-chain organic acids after chronic ethanol administration and its interaction with the carnitine pool in rat. Archives of Biochemistry and Biophysics, 2004, 431, 271-278.	1.4	13
178	Multivariate statistical analysis of the polyphenols content for the discrimination of honey produced in Sicily (Southern Italy). Journal of Food Composition and Analysis, 2019, 82, 103225.	1.9	13
179	Hormesis and neural stem cells. Free Radical Biology and Medicine, 2022, 178, 314-329.	1.3	13
180	Enhancing health span: muscle stem cells and hormesis. Biogerontology, 2022, 23, 151-167.	2.0	13

#	Article	IF	CITATIONS
181	Human dental pulp stem cells and hormesis. Ageing Research Reviews, 2022, 73, 101540.	5.0	12
182	Hormesis and vitagenes in aging and longevity: mitochondrial control and hormonal regulation. Hormone Molecular Biology and Clinical Investigation, 2013, 16, 73-89.	0.3	11
183	<i>Coriolus versicolor</i> biomass increases dendritic arborization of newly-generated neurons in mouse hippocampal dentate gyrus. Oncotarget, 2018, 9, 32929-32942.	0.8	11
184	Potential prevention and treatment of neurodegenerative disorders by olive polyphenols and hidrox. Mechanisms of Ageing and Development, 2022, 203, 111637.	2.2	11
185	Coriolus Versicolor Downregulates TLR4/NF-κB Signaling Cascade in Dinitrobenzenesulfonic Acid-Treated Mice: A Possible Mechanism for the Anti-Colitis Effect. Antioxidants, 2022, 11, 406.	2.2	11
186	Highlight Commentary on "Redox proteomics analysis of oxidatively modified proteins in G93A–SOD1 transgenic mice—A model of familial amyotrophic lateral sclerosis― Free Radical Biology and Medicine, 2007, 43, 160-162.	1.3	10
187	Cytotoxicity models of Huntington's disease and relevance of hormetic mechanisms: A critical assessment of experimental approaches and strategies. Pharmacological Research, 2019, 150, 104371.	3.1	10
188	Neuroinflammation and Mitochondrial Dysfunction in the Pathogenesis of Alzheimer?s Disease: Modulation by Coriolus Versicolor (Yun-Zhi) Nutritional Mushroom. Journal of Neurology and Neuromedicine, 2017, 2, 19-28.	0.9	10
189	Xenohormesis underlyes the anti-aging and healthy properties of olive polyphenols. Mechanisms of Ageing and Development, 2022, 202, 111620.	2.2	10
190	Wnt/β-Catenin Pathway in Experimental Model of Fibromyalgia: Role of Hidrox®. Biomedicines, 2021, 9, 1683.	1.4	7
191	Anti-Candidal Activity of the Parasitic Plant Orobanche crenata Forssk. Antibiotics, 2021, 10, 1373.	1.5	5
192	Nitric Oxide and Cellular Stress Response in Brain Aging and Neurodegenerative Disorders. , 2007, , 115-134.		4
193	Mushroom Biomass: Some Clinical Implications of β-Glucans and Enzymes. Current Research in Nutrition and Food Science, 2016, 4, 37-47.	0.3	4
194	Clinical Trials on Diabetic Nephropathy: A Cross-Sectional Analysis. Diabetes Therapy, 2019, 10, 229-243.	1.2	3
195	Hormesis, Resilience and Mental Health: Enhancing Public Health and Therapeutic Options. Healthy Ageing and Longevity, 2020, , 497-520.	0.2	3
196	CHAPTER 12. Inflammaging, Oxidative Stress and Carnosine: Role of Hormetic Vitagenes. Food and Nutritional Components in Focus, 2015, , 238-256.	0.1	3
197	Stem cells and hormesis. Current Opinion in Toxicology, 2022, 30, 100340.	2.6	3
198	OLIVE OIL POLYPHENOLS SHOW BENEFICIAL EFFECTS IN TWO C. ELEGANS PARKINSON MODELS. Pathophysiology, 2018, 25, 203.	1.0	2

#	Article	IF	CITATIONS
199	Sulfhydryl-Reactive Phytochemicals as Dual Activators of Transcription Factors NRF2 and HSF1. , 2013, , 95-119.		2
200	Nutritional Redox Homeostasis and Cellular Stress Response. Oxidative Stress and Disease, 2008, , .	0.3	2
201	Heme Oxygenase as a Therapeutic Funnel in Nutritional Redox Homeostasis and Cellular Stress Response. , 2009, , 39-52.		1
202	Cellular Stress Response, Hormesis, and Vitagens in Aging and Longevity. , 2014, , 309-321.		1
203	Neuroprotective Mechanisms of Dietary Phytochemicals. , 2016, , 251-261.		1
204	Mushroom Nutrition In Neurodegenerative Syndromes. , 2022, 6, .		1
205	Fatty Acids Composition of Stomach Oil of Scopoli's Shearwater (Calonectris diomedea) from Linosa's Colony. Animals, 2022, 12, 1069.	1.0	1
206	Exercise-mediated alteration of protein redox states in plasma: a possible stimulant for hormetic response. Sport Sciences for Health, 2007, 2, 76-79.	0.4	0
207	Putative hormetic mechanisms and effects of atypical antipsychotic agents: Implications for study design and clinical psychopharmacotherapeutics. Chemico-Biological Interactions, 2021, 333, 109327.	1.7	0
208	Resilience signaling and hormesis in brain health and disease. , 2021, , 155-172.		0
209	Food for Brain Health. Healthy Ageing and Longevity, 2021, , 239-274.	0.2	0
210	CORIOLUS VERSICOLOR BIOMASS INCREASES HIPPOCAMPAL DENTATE GYRUS NEWLY-GENERATED NEURONS COMPLEXITY IN MICE. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-1-53.	0.0	0
211	Brain health promotion: Tactics within a strategic approach based upon valid, yet evolving scientific evidence. Mechanisms of Ageing and Development, 2022, 201, 111605.	2.2	0