
Ganapati V Shanbhag

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2623635/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pd (II) decorated conductive two-dimensional chromium-pyrazine metal-organic framework for rapid detection of hydrogen. International Journal of Hydrogen Energy, 2022, 47, 9477-9483.	7.1	7
2	Enhanced Gas Sensing Performance of Nanoâ€&tructured Ta ₂ O ₅ â€&nO ₂ Composite for Low Concentration CO Detection. ChemistrySelect, 2022, 7, .	1.5	3
3	Polyaniline/(Ta ₂ 0 ₅ –SnO ₂) hybrid nanocomposite for efficient room temperature CO gas sensing. RSC Advances, 2022, 12, 15759-15766.	3.6	6
4	Response surface optimization and process design for glycidol synthesis using potassium modified rice husk silica. Materials Today: Proceedings, 2021, 41, 506-512.	1.8	6
5	Molybdenum Carbonyl Grafted on Amine-Functionalized MCM-22 as Potential Catalyst for Iso-Eugenol Oxidation. Catalysis Letters, 2021, 151, 1336-1349.	2.6	9
6	Selective SO2 detection at low concentration by Ca substituted LaFeO3 chemiresistive gas sensor: A comparative study of LaFeO3 pellet vs thin film. Sensors and Actuators B: Chemical, 2021, 329, 129211.	7.8	45
7	Recognizing soft templates as stimulators in multivariate modulation of tin phosphate and its application in catalysis for alkyl levulinate synthesis. Catalysis Science and Technology, 2021, 11, 272-282.	4.1	5
8	Heterogeneous Catalysis for Chemical Fixation of CO2 via Carbonylation Reactions. Green Energy and Technology, 2021, , 141-169.	0.6	0
9	Utilization of renewable resources: Investigation on role of active sites in zeolite catalyst for transformation of furfuryl alcohol into alkyl levulinate. Molecular Catalysis, 2021, 502, 111361.	2.0	7
10	Bismuth oxycarbonate Nanoplates@α-Ni(OH)2 nanosheets 2D plate-on-sheet heterostructure as electrode for high-performance supercapacitor. Journal of Alloys and Compounds, 2021, 860, 158495.	5.5	13
11	Zn-Doped CeO ₂ Nanorods for Glycerol Carbonylation with CO ₂ . ACS Applied Nano Materials, 2021, 4, 4388-4397.	5.0	23
12	Exploring tailor-made BrÃ,nsted acid sites in mesopores of tin oxide catalyst for β-alkoxy alcohol and amino alcohol syntheses. Scientific Reports, 2021, 11, 15718.	3.3	12
13	Green route for carbonylation of amines by CO2 using Sn-Ni-O bifunctional catalyst and theoretical study for finding best suited active sites. Chemical Engineering Journal, 2021, 419, 129439.	12.7	8
14	Application of tin oxide-based materials in catalysis. , 2020, , 519-553.		4
15	Exploring the acidity of a functionalized mesoporous polymer catalyst (P-SO ₃ H) for glycerol <i>tert</i> -butyl ether synthesis. Sustainable Energy and Fuels, 2020, 4, 6299-6310.	4.9	12
16	Alkali/alkaline earth ion-exchanged and palladium dispersed MCM-22 zeolite as a potential catalyst for eugenol isomerization and Heck coupling reactions. Journal of Chemical Sciences, 2020, 132, 1.	1.5	9
17	Rational design of bifunctional catalyst from KF and ZnO combination on alumina for cyclic urea synthesis from CO2 and diamine. Applied Catalysis A: General, 2020, 598, 117550.	4.3	12
18	Identification and tuning of active sites in selected mixed metal oxide catalysts for cyclic carbonate synthesis from epoxides and CO2. Journal of CO2 Utilization, 2019, 33, 434-444.	6.8	66

GANAPATI V SHANBHAG

#	Article	IF	CITATIONS
19	Mesoporous tin oxide: An efficient catalyst with versatile applications in acid and oxidation catalysis. Catalysis Today, 2018, 309, 61-76.	4.4	58
20	Bi ₄ TaO ₈ Cl Nano-Photocatalyst: Influence of Local, Average, and Band Structure. Inorganic Chemistry, 2017, 56, 5525-5536.	4.0	37
21	Remarkable catalytic activity of a sulfonated mesoporous polymer (MP-SO ₃ H) for the synthesis of solketal at room temperature. New Journal of Chemistry, 2017, 41, 5745-5751.	2.8	49
22	Novel Bifunctional Zn–Sn Composite Oxide Catalyst for the Selective Synthesis of Glycerol Carbonate by Carbonylation of Glycerol with Urea. ChemCatChem, 2016, 8, 631-639.	3.7	42
23	Synthesis of biodiesel and acetins by transesterification reactions using novel CaSn(OH)6 heterogeneous base catalyst . Applied Catalysis A: General, 2016, 523, 1-11.	4.3	36
24	Enhancement in activity and shape selectivity of zeolite BEA by phosphate treatment for 2-methoxynaphthalene acylation. RSC Advances, 2016, 6, 90579-90586.	3.6	2
25	Catalytic etherification of glycerol to tert-butyl glycerol ethers using tert-butanol over sulfonic acid functionalized mesoporous polymer. RSC Advances, 2016, 6, 82654-82660.	3.6	28
26	Aromatization of C ₅ â€rich Light Naphtha Feedstock over Tailored Zeolite Catalysts: Comparison with Model Compounds (nâ€C ₅ ―nâ€C ₇). ChemistrySelect, 2016, 1, 2515-2521.	1.5	29
27	Superior performance of mesoporous tin oxide over nano and bulk forms in the activation of a carbonyl group: conversion of bio-renewable feedstock. Catalysis Science and Technology, 2016, 6, 2268-2279.	4.1	23
28	Utilization of renewable resources: Condensation of glycerol with acetone at room temperature catalyzed by organic–inorganic hybrid catalyst. Journal of Molecular Catalysis A, 2015, 401, 73-80.	4.8	38
29	Green and Sustainable Tandem Catalytic Approach for Fine-Chemicals Synthesis Using Octahedral MnO ₂ Molecular Sieve: Catalytic Activity versus Method of Catalyst Synthesis. ACS Sustainable Chemistry and Engineering, 2015, 3, 2933-2943.	6.7	40
30	Shape-selective synthesis of para -diethylbenzene over pore-engineered ZSM-5: A kinetic study. Chemical Engineering Science, 2015, 138, 396-402.	3.8	10
31	Molybdenum oxide/γ-alumina: an efficient solid acid catalyst for the synthesis of nopol by Prins reaction. RSC Advances, 2015, 5, 93452-93462.	3.6	31
32	Glycerol acetins: fuel additive synthesis by acetylation and esterification of glycerol using cesium phosphotungstate catalyst. RSC Advances, 2015, 5, 104354-104362.	3.6	51
33	Room temperature synthesis of solketal from acetalization of glycerol with acetone: Effect of crystallite size and the role of acidity of beta zeolite. Journal of Molecular Catalysis A, 2015, 396, 47-54.	4.8	138
34	Shape-selective catalysis by phosphate modified ZSM-5: Generation of new acid sites with pore narrowing. Applied Catalysis A: General, 2014, 471, 12-18.	4.3	58
35	Phosphate modified ZSM-5 for the shape-selective synthesis of para-diethylbenzene: Role of crystal size and acidity. Applied Catalysis A: General, 2014, 484, 8-16.	4.3	33
36	Zinc hydroxystannate: a promising solid acid–base bifunctional catalyst. RSC Advances, 2014, 4, 974-977.	3.6	27

GANAPATI V SHANBHAG

#	Article	IF	CITATIONS
37	Metal ion-exchanged zeolites as solid acid catalysts for the green synthesis of nopol from Prins reaction. Catalysis Science and Technology, 2014, 4, 4065-4074.	4.1	55
38	Transesterification of Glycerol to Glycerol Carbonate Using KF/Al2O3 Catalyst: The Role of Support and Basicity. Catalysis Letters, 2013, 143, 1226-1234.	2.6	36
39	Sulfated zirconia; an efficient and reusable acid catalyst for the selective synthesis of 4-phenyl-1,3-dioxane by Prins cyclization of styrene. Applied Catalysis A: General, 2013, 451, 71-78.	4.3	41
40	Condensation reactions assisted by acidic hydrogen bonded hydroxyl groups in solid tin(ii)hydroxychloride. RSC Advances, 2013, 3, 10795.	3.6	21
41	Supported Heteropoly Acids and Multicomponent Polyoxometalates as Eco-Friendly Solid Catalysts for Bulk and Fine Chemicals Synthesis. , 2013, , 105-139.		2
42	Mesoporous sodalite: A novel, stable solid catalyst for base-catalyzed organic transformations. Journal of Catalysis, 2009, 264, 88-92.	6.2	87
43	Non-phosgene route for the synthesis of methyl phenyl carbamate using ordered AlSBA-15 catalyst. Journal of Molecular Catalysis A, 2008, 295, 29-33.	4.8	31
44	Chemoselective synthesis of Î ² -amino acid derivatives by hydroamination of activated olefins using AISBA-15 catalyst prepared by post-synthetic treatment. Journal of Molecular Catalysis A, 2008, 284, 16-23.	4.8	28
45	Copper(II) ion exchanged AlSBA-15: A versatile catalyst for intermolecular hydroamination of terminal alkynes with aromatic amines. Journal of Catalysis, 2007, 250, 274-282.	6.2	47
46	Synthesis of monoallyl guaiacol via allylation using HY zeolite. Journal of Molecular Catalysis A, 2006, 244, 278-282.	4.8	14
47	Phenol tert-butylation over zirconia-supported 12-molybdophosphoric acid catalyst. Journal of Molecular Catalysis A, 2006, 247, 162-170.	4.8	16
48	Chemoselective anti-Markovnikov hydroamination of α,β-ethylenic compounds with amines using montmorillonite clay. Journal of Molecular Catalysis A, 2006, 250, 210-217.	4.8	16
49	Heteropoly acid supported on titania as solid acid catalyst in alkylation of p-cresol with tert-butanol. Journal of Molecular Catalysis A, 2006, 256, 324-334.	4.8	66
50	Heterogeneous intermolecular hydroamination of terminal alkynes with aromatic amines. Tetrahedron Letters, 2006, 47, 141-143.	1.4	59
51	Zirconia-supported phosphotungstic acid as catalyst for alkylation of phenol with benzyl alcohol. Journal of Molecular Catalysis A, 2005, 230, 113-119.	4.8	27
52	Silicotungstate-modified zirconia as an efficient catalyst for phenol tert-butylation. Journal of Molecular Catalysis A, 2005, 233, 141-146.	4.8	18
53	Copper(II) ion-exchanged montmorillonite as catalyst for the direct addition of NH bond to CC triple bond. Journal of Molecular Catalysis A, 2005, 236, 139-144.	4.8	43
54	Alkylation of p-cresol with tert-butanol catalyzed by heteropoly acid supported on zirconia catalyst. Journal of Molecular Catalysis A, 2004, 210, 125-130.	4.8	58

#	Article	IF	CITATIONS
55	Intermolecular hydroamination of alkynes catalyzed by zinc-exchanged montmorillonite clay. Journal of Molecular Catalysis A, 2004, 222, 223-228.	4.8	47
56	Liquid phase allylation of anisole using TPA/ZrO2 catalyst. Journal of Molecular Catalysis A, 2004, 218, 67-72.	4.8	9
57	Aerial oxidation of substituted aromatic hydrocarbons catalyzed by Co/Mn/Brâ^' in water-dioxane medium. Catalysis Communications, 2004, 5, 9-13.	3.3	31
58	Selective synthesis of furfuryl acetate over solid acid catalysts and active site exploration using density functional theory. Catalysis Science and Technology, 0, , .	4.1	1