List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2623449/publications.pdf Version: 2024-02-01

		71004	111975
98	5,241	43	67
papers	citations	h-index	g-index
110	110	110	2.470
112	112	112	3470
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Carbon catabolite repression in pectin digestion by the phytopathogen Dickeya dadantii. Journal of Biological Chemistry, 2022, 298, 101446.	1.6	1
2	Specificity and genetic polymorphism in the Vfm quorum sensing system of plant pathogenic bacteria of the genus <i>Dickeya</i> . Environmental Microbiology, 2022, 24, 1467-1483.	1.8	8
3	Implications of carbon catabolite repression for plant–microbe interactions. Plant Communications, 2022, 3, 100272.	3.6	11
4	Relationship between the Chromosome Structural Dynamics and Gene Expression—A Chicken and Egg Dilemma?. Microorganisms, 2022, 10, 846.	1.6	7
5	Mapping the Complex Transcriptional Landscape of the Phytopathogenic Bacterium Dickeya dadantii. MBio, 2022, 13, e0052422.	1.8	4
6	Quantitative contribution of the spacer length in the supercoiling-sensitivity of bacterial promoters. Nucleic Acids Research, 2022, 50, 7287-7297.	6.5	1
7	Separation and quantification of 2-keto-3-deoxy-gluconate (KDG) a major metabolite in pectin and alginate degradation pathways. Analytical Biochemistry, 2021, 619, 114061.	1.1	6
8	Pattern and causes of the establishment of the invasive bacterial potato pathogen Dickeya solani and of the maintenance of the resident pathogen D.Âdianthicola. Molecular Ecology, 2021, 30, 608-624.	2.0	13
9	The nucleoid-associated protein IHF acts as a â€~transcriptional domainin' protein coordinating the bacterial virulence traits with global transcription. Nucleic Acids Research, 2021, 49, 776-790.	6.5	21
10	Quorum Sensing Regulation in Phytopathogenic Bacteria. Microorganisms, 2021, 9, 239.	1.6	37
11	RNA Chaperones Hfq and ProQ Play a Key Role in the Virulence of the Plant Pathogenic Bacterium Dickeya dadantii. Frontiers in Microbiology, 2021, 12, 687484.	1.5	5
12	Role of the Discriminator Sequence in the Supercoiling Sensitivity of Bacterial Promoters. MSystems, 2021, 6, e0097821.	1.7	13
13	Design and comparative characterization of RecA variants. Scientific Reports, 2021, 11, 21106.	1.6	0
14	Acetic acid bacteria (AAB) involved in cocoa fermentation from Ivory Coast: species diversity and performance in acetic acid production. Journal of Food Science and Technology, 2020, 57, 1904-1916.	1.4	24
15	Dickeya poaceiphila sp. nov., a plant-pathogenic bacterium isolated from sugar cane (Saccharum) Tj ETQq1 1	0.784314 rgl 0.8	BT ¦Overlock
16	DNA Supercoiling: an Ancestral Regulator of Gene Expression in Pathogenic Bacteria?. Computational and Structural Biotechnology Journal, 2019, 17, 1047-1055.	1.9	33
17	Bacterial genome architecture shapes global transcriptional regulation by DNA supercoiling. Nucleic Acids Research, 2019, 47, 5648-5657.	6.5	60
18	APERO: a genome-wide approach for identifying bacterial small RNAs from RNA-Seq data. Nucleic Acids Research, 2019, 47, e88-e88.	6.5	21

#	Article	IF	CITATIONS
19	The phytopathogenic nature of <i>Dickeya aquatica</i> 174/2 and the dynamic early evolution of <i>Dickeya</i> pathogenicity. Environmental Microbiology, 2019, 21, 2809-2835.	1.8	32
20	Coherent Domains of Transcription Coordinate Gene Expression During Bacterial Growth and Adaptation. Microorganisms, 2019, 7, 694.	1.6	13
21	Modeling the bioconversion of polysaccharides in a continuous reactor: A case study of the production of oligogalacturonates by Dickeya dadantii. Journal of Biological Chemistry, 2019, 294, 1753-1762.	1.6	4
22	RecA and DNA recombination: a review of molecular mechanisms. Biochemical Society Transactions, 2019, 47, 1511-1531.	1.6	32
23	Chromosomal organization of transcription: in a nutshell. Current Genetics, 2018, 64, 555-565.	0.8	39
24	Lactic acid bacteria involved in cocoa beans fermentation from Ivory Coast: Species diversity and citrate lyase production. International Journal of Food Microbiology, 2017, 256, 11-19.	2.1	61
25	New nucleic acid testing devices to diagnose infectious diseases in resource-limited settings. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 1717-1731.	1.3	57
26	Regulation of the synthesis of pulp degrading enzymes in Bacillus isolated from cocoa fermentation. Food Microbiology, 2017, 63, 255-262.	2.1	20
27	Plant–phytopathogen interactions: bacterial responses to environmental and plant stimuli. Environmental Microbiology, 2017, 19, 1689-1716.	1.8	65
28	Global transcriptional response of <i>Dickeya dadantii</i> to environmental stimuli relevant to the plant infection. Environmental Microbiology, 2016, 18, 3651-3672.	1.8	53
29	From multiple pathogenicity islands to a unique organized pathogenicity archipelago. Scientific Reports, 2016, 6, 27978.	1.6	17
30	Regulation of pel genes, major virulence factors in the plant pathogen bacterium Dickeya dadantii , is mediated by cooperative binding of the nucleoid-associated protein H-NS. Research in Microbiology, 2016, 167, 247-253.	1.0	6
31	Virulence Program of a Bacterial Plant Pathogen: The Dickeya Model. Progress in Molecular Biology and Translational Science, 2016, 142, 51-92.	0.9	65
32	Temporal control of Dickeya dadantii main virulence gene expression by growth phase-dependent alteration of regulatory nucleoprotein complexes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 1470-1480.	0.9	16
33	Transcriptional start site turnover in the evolution of bacterial paralogous genes – the <i>pelEâ€pelD</i> virulence genes in <i>Dickeya</i> . FEBS Journal, 2016, 283, 4192-4207.	2.2	15
34	IscR Regulates Synthesis of Colonization Factor Antigen I Fimbriae in Response to Iron Starvation in Enterotoxigenic Escherichia coli. Journal of Bacteriology, 2015, 197, 2896-2907.	1.0	35
35	Chromosomal "Stress-Response―Domains Govern the Spatiotemporal Expression of the Bacterial Virulence Program. MBio, 2015, 6, e00353-15.	1.8	49
36	Rethinking the Bacterial Genetic Regulation. Biochemistry and Analytical Biochemistry: Current Research, 2015, 04, .	0.4	4

#	Article	IF	CITATIONS
37	Bacterial virulence and Fis: adapting regulatory networks to the host environment. Trends in Microbiology, 2014, 22, 92-99.	3.5	46
38	Role of the <scp>LysR</scp> â€ŧype transcriptional regulator <scp>PecT</scp> and <scp>DNA</scp> supercoiling in the thermoregulation of <scp><i>pel</i></scp> genes, the major virulence factors in <i><scp>D</scp>ickeya dadantii</i> . Environmental Microbiology, 2014, 16, 734-745.	1.8	30
39	<i><scp>D</scp>ickeya</i> ecology, environment sensing and regulation of virulence programme. Environmental Microbiology Reports, 2013, 5, 622-636.	1.0	163
40	Vfm a new quorum sensing system controls the virulence of <i><scp>D</scp>ickeya dadantii</i> . Environmental Microbiology, 2013, 15, 865-880.	1.8	95
41	The nucleoidâ€associated protein Fis directly modulates the synthesis of cellulose, an essential component of pellicle–biofilms in the phytopathogenic bacterium <i>Dickeya dadantii</i> . Molecular Microbiology, 2012, 86, 172-186.	1.2	55
42	The nucleoid-associated proteins H-NS and FIS modulate the DNA supercoiling response of the pel genes, the major virulence factors in the plant pathogen bacterium Dickeya dadantii. Nucleic Acids Research, 2012, 40, 4306-4319.	6.5	80
43	Quorum Sensing Signaling Molecules Produced by Reference and Emerging Soft-Rot Bacteria (Dickeya) Tj ETQq1	1 0,78431 1.1	4.rgBT /Ove
44	The Role of Secretion Systems and Small Molecules in Soft-Rot <i>Enterobacteriaceae</i> Pathogenicity. Annual Review of Phytopathology, 2012, 50, 425-449.	3.5	217
45	PecS is an important player in the regulatory network governing the coordinated expression of virulence genes during the interaction between <i>Dickeya dadantii</i> 3937 and plants. Environmental Microbiology, 2011, 13, 2901-2914.	1.8	32
46	Molecular identification and pectate lyase production by Bacillus strains involved in cocoa fermentation. Food Microbiology, 2011, 28, 1-8.	2.1	45
47	LuxR dependent quorum sensing inhibition by N,N′-disubstituted imidazolium salts. Bioorganic and Medicinal Chemistry, 2011, 19, 4868-4875.	1.4	15
48	Genome Sequence of the Plant-Pathogenic Bacterium Dickeya dadantii 3937. Journal of Bacteriology, 2011, 193, 2076-2077.	1.0	113
49	lpxC and yafS are the Most Suitable Internal Controls to Normalize Real Time RT-qPCR Expression in the Phytopathogenic Bacteria Dickeya dadantii. PLoS ONE, 2011, 6, e20269.	1.1	41
50	Systematic targeted mutagenesis of the MarR/SlyA family members of Dickeya dadantii 3937 reveals a role for MfbR in the modulation of virulence gene expression in response to acidic pH. Molecular Microbiology, 2010, 78, 1018-1037.	1.2	37
51	Toward a Quantitative Modeling of the Synthesis of the Pectate Lyases, Essential Virulence Factors in Dickeya dadantii. Journal of Biological Chemistry, 2010, 285, 28565-28576.	1.6	38
52	Biochemical Properties of Pectate Lyases Produced by Three Different <i>Bacillus</i> Strains Isolated from Fermenting Cocoa Beans and Characterization of Their Cloned Genes. Applied and Environmental Microbiology, 2010, 76, 5214-5220.	1.4	34
53	Identification of TogMNAB, an ABC transporter which mediates the uptake of pectic oligomers in Erwinia chrysanthemi 3937. Molecular Microbiology, 2008, 41, 1113-1123.	1.2	47
54	Two transporters, TogT and TogMNAB, are responsible for oligogalacturonide uptake in Erwinia chrysanthemi 3937. Molecular Microbiology, 2008, 41, 1125-1132.	1.2	37

#	Article	IF	CITATIONS
55	Synthetic homoserine lactone-derived sulfonylureas as inhibitors of Vibrio fischeri quorum sensing regulator. Bioorganic and Medicinal Chemistry, 2008, 16, 3550-3556.	1.4	42
56	N-Acyl-3-amino-5H-furanone derivatives as new inhibitors of LuxR-dependent quorum sensing: Synthesis, biological evaluation and binding mode study. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4321-4324.	1.0	45
57	The GacA global regulator is required for the appropriate expression of <i>Erwinia chrysanthemi</i> 3937 pathogenicity genes during plant infection. Environmental Microbiology, 2008, 10, 545-559.	1.8	81
58	PecS Is a Global Regulator of the Symptomatic Phase in the Phytopathogenic Bacterium <i>Erwinia chrysanthemi</i> 3937. Journal of Bacteriology, 2008, 190, 7508-7522.	1.0	94
59	Analysis of the LacI Family Regulators of Erwinia chrysanthemi 3937, Involvement in the Bacterial Phytopathogenicity. Molecular Plant-Microbe Interactions, 2008, 21, 1471-1481.	1.4	28
60	Differential Role of Ferritins in Iron Metabolism and Virulence of the Plant-Pathogenic Bacterium <i>Erwinia chrysanthemi</i> 3937. Journal of Bacteriology, 2008, 190, 1518-1530.	1.0	40
61	Efflux Pump Gene Expression in Erwinia chrysanthemi Is Induced by Exposure to Phenolic Acids. Molecular Plant-Microbe Interactions, 2007, 20, 313-320.	1.4	43
62	Modeling the onset of virulence in a pectinolytic bacterium. Journal of Theoretical Biology, 2007, 244, 239-257.	0.8	49
63	New insights into the regulatory mechanisms of the LuxR family of quorum sensing regulators. Analytical and Bioanalytical Chemistry, 2007, 387, 381-390.	1.9	102
64	The PecM protein is necessary for the DNA-binding capacity of the PecS repressor, one of the regulators of virulence-factor synthesis in Erwinia chrysanthemi. FEMS Microbiology Letters, 2006, 154, 265-270.	0.7	12
65	Synthesis and biological evaluation of homoserine lactone derived ureas as antagonists of bacterial quorum sensing. Bioorganic and Medicinal Chemistry, 2006, 14, 4781-4791.	1.4	76
66	Synthesis and Biological Evaluation of the Trifluoromethyl Analog of (4S)-4,5-Dihydroxy-2,3-pentanedione (DPD). European Journal of Organic Chemistry, 2006, 2006, 4731-4736.	1.2	40
67	Direct Evidence for the Modulation of the Activity of the Erwinia chrysanthemi Quorum-sensing Regulator ExpR by Acylhomoserine Lactone Pheromone. Journal of Biological Chemistry, 2006, 281, 29972-29987.	1.6	46
68	PecS and PecT Coregulate the Synthesis of HrpN and Pectate Lyases, Two Virulence Determinants in Erwinia chrysanthemi 3937. Molecular Plant-Microbe Interactions, 2005, 18, 1205-1214.	1.4	30
69	Definition of a Consensus DNA-binding Site for PecS, a Global Regulator of Virulence Gene Expression in Erwinia chrysanthemi and Identification of New Members of the PecS Regulon. Journal of Biological Chemistry, 2004, 279, 30158-30167.	1.6	51
70	N-Sulfonyl homoserine lactones as antagonists of bacterial quorum sensing. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5145-5149.	1.0	109
71	Characterization of Indigoidine Biosynthetic Genes in <i>Erwinia chrysanthemi</i> and Role of This Blue Pigment in Pathogenicity. Journal of Bacteriology, 2002, 184, 654-665.	1.0	177
72	New synthetic analogues of N -acyl homoserine lactones as agonists or antagonists of transcriptional regulators involved in bacterial quorum sensing. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1153-1157.	1.0	135

#	Article	IF	CITATIONS
73	H-NS-dependent activation of pectate lyases synthesis in the phytopathogenic bacteriumErwinia chrysanthemiis mediated by the PecT repressor. Molecular Microbiology, 2002, 43, 733-748.	1.2	61
74	Role of the Nucleoid-Associated Protein H-NS in the Synthesis of Virulence Factors in the Phytopathogenic Bacterium Erwinia chrysanthemi. Molecular Plant-Microbe Interactions, 2001, 14, 10-20.	1.4	47
75	The PecT repressor interacts with regulatory regions of pectate lyase genes in Erwinia chrysanthemi. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1442, 148-160.	2.4	15
76	Characterization of theErwinia chrysanthemi expl–expRlocus directing the synthesis of twoNâ€acylâ€homoserine lactone signal molecules. Molecular Microbiology, 1998, 29, 1391-1405.	1.2	173
77	Integration of the quorumâ€sensing system in the regulatory networks controlling virulence factor synthesis inErwinia chrysanthemi. Molecular Microbiology, 1998, 29, 1407-1418.	1.2	99
78	Characterization of the pecT control region from Erwinia chrysanthemi 3937. Journal of Bacteriology, 1997, 179, 4909-4918.	1.0	32
79	The cyclic AMP receptor protein is the main activator of pectinolysis genes in Erwinia chrysanthemi. Journal of Bacteriology, 1997, 179, 3500-3508.	1.0	96
80	Mutual control of the PecS/PecM couple, two proteins regulating virulenceâ€factor synthesis in Erwinia chrysanthemi. Molecular Microbiology, 1997, 24, 803-814.	1.2	36
81	Antagonistic effect of CRP and KdgR in the transcription control of the Erwinia chrysanthemi pectinolysis genes. Molecular Microbiology, 1997, 26, 1071-1082.	1.2	60
82	Regulation of pectinase biosynthesis in Erwinia chrysanthemi. Progress in Biotechnology, 1996, , 311-330.	0.2	2
83	REGULATION OF PECTINOLYSIS INERWINIA CHRYSANTHEMI. Annual Review of Microbiology, 1996, 50, 213-257.	2.9	401
84	Purification and functional characterization of PecS, a regulator of virulence-factor synthesis in Erwinia chrysanthemi. Molecular Microbiology, 1996, 20, 391-402.	1.2	80
85	pecS: a locus controlling pectinase, cellulase and blue pigment production in Erwinia chrysanthemi. Molecular Microbiology, 1994, 11, 1127-1139.	1.2	151
86	Specific Interactions of Erwinia chrysanthemi KdgR Repressor with Different Operators of Genes Involved in Pectinolysis. Journal of Molecular Biology, 1994, 236, 427-440.	2.0	110
87	Pectate lyase fromBacillus subtilis: molecular characterization of the gene, and properties of the cloned enzyme. FEBS Letters, 1993, 335, 319-326.	1.3	60
88	Regulation of the expression of a pelA:: uidA fusion in Erwinia chrysanthemi and demonstration of the synergistic action of plant extract with polygalacturonate on pectate lyase synthesis. Journal of General Microbiology, 1993, 139, 1-9.	2.3	45
89	Purification and functional characterization of the KdgR protein, a major repressor of pectinolysis genes of Erwinia chrysanthemi. Molecular Microbiology, 1992, 6, 257-265.	1.2	87
90	Characterization ofkdgR, a gene ofErwinia chrysanthemithat regulates pectin degradation. Molecular Microbiology, 1991, 5, 2203-2216.	1.2	112

#	Article	IF	CITATIONS
91	Expanded linkage map of Erwinia chrysanthemi strain 3937. Molecular Microbiology, 1989, 3, 573-581.	1.2	47
92	Nucleotide sequences of the Erwinia chrysanthemi ogl and pelE genes negatively regulated by the kdgR gene product. Gene, 1989, 85, 125-134.	1.0	64
93	Nucleotide sequence of the Erwinia chrysanthemi gene encoding 2-keto-3-deoxygluconate permease. Gene, 1989, 83, 233-241.	1.0	14
94	Regulation of expression of pectate lyase genes pelA, pelD, and pelE in Erwinia chrysanthemi. Journal of Bacteriology, 1987, 169, 2417-2423.	1.0	27
95	Molecular cloning of an Erwinia chrysanthemi oligogalacturonate lyase gene involved in pectin degradation. Gene, 1987, 55, 125-133.	1.0	22
96	Organization of a pectate lyase gene family in Erwinia chrysanthemi. Gene, 1986, 49, 215-224.	1.0	58
97	Genetic transformation of the phytopathogenic bacteria, Erwinia chrysanthemi. Biochimie, 1985, 67, 253-257.	1.3	18
98	Cloning of genes encoding pectolytic enzymes from a genomic library of the phytopathogenic bacterium, Erwinia chrysanthemi. Gene, 1985, 35, 121-130.	1.0	57