Liangliang Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2623287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of monoplanar and polyaxial screw fixation systems in percutaneous intermediate fixation for thoracolumbar fractures. BMC Musculoskeletal Disorders, 2022, 23, 172.	1.9	2
2	Fabrication of 3D Scaffolds Displaying Biochemical Gradients along Longitudinally Oriented Microchannels for Neural Tissue Engineering. ACS Applied Materials & Interfaces, 2020, 12, 48380-48394.	8.0	22
3	Mechanical stimulation of Schwann cells promote peripheral nerve regeneration via extracellular vesicle-mediated transfer of microRNA 23b-3p. Theranostics, 2020, 10, 8974-8995.	10.0	47
4	<p>Magnetic Field Promotes Migration of Schwann Cells with Chondroitinase ABC (ChABC)-Loaded Superparamagnetic Nanoparticles Across Astrocyte Boundary in vitro</p> . International Journal of Nanomedicine, 2020, Volume 15, 315-332.	6.7	17
5	Timeâ€restricted release of multiple neurotrophic factors promotes axonal regeneration and functional recovery after peripheral nerve injury. FASEB Journal, 2019, 33, 8600-8613.	0.5	24
6	Extracellular Vesicles Derived From Olfactory Ensheathing Cells Promote Peripheral Nerve Regeneration in Rats. Frontiers in Cellular Neuroscience, 2019, 13, 548.	3.7	27
7	A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Acta Biomaterialia, 2018, 68, 223-236.	8.3	97
8	Enhanced <i>in vivo</i> survival of Schwann cells by a synthetic oxygen carrier promotes sciatic nerve regeneration and functional recovery. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e177-e189.	2.7	16
9	Adiponectin Downregulates TNF-α Expression in Degenerated Intervertebral Discs. Spine, 2018, 43, E381-E389.	2.0	20
10	Noncovalent Bonding of RGD and YIGSR to an Electrospun Poly(εâ€Caprolactone) Conduit through Peptide Selfâ€Assembly to Synergistically Promote Sciatic Nerve Regeneration in Rats. Advanced Healthcare Materials, 2017, 6, 1600860.	7.6	66
11	Potential Mechanism of Neurite Outgrowth Enhanced by Electrical Stimulation: Involvement of MicroRNA-363-5p Targeting DCLK1 Expression in Rat. Neurochemical Research, 2017, 42, 513-525.	3.3	14
12	Superparamagnetic Iron Oxide Nanoparticle-Mediated Forces Enhance the Migration of Schwann Cells Across the Astrocyte-Schwann Cell Boundary In vitro. Frontiers in Cellular Neuroscience, 2017, 11, 83.	3.7	21
13	Circadian Rhythm Influences the Promoting Role of Pulsed Electromagnetic Fields on Sciatic Nerve Regeneration in Rats. Frontiers in Neurology, 2017, 8, 101.	2.4	8
14	A magnetically responsive nanocomposite scaffold combined with Schwann cells promotes sciatic nerve regeneration upon exposure to magnetic field. International Journal of Nanomedicine, 2017, Volume 12, 7815-7832.	6.7	42
15	Manipulation of Schwann cell migration across the astrocyte boundary by polysialyltransferase-loaded superparamagnetic nanoparticles under magnetic field. International Journal of Nanomedicine, 2016, Volume 11, 6727-6741.	6.7	20
16	Experimental immunological demyelination enhances regeneration in autograft-repaired long peripheral nerve gaps. Scientific Reports, 2016, 6, 39828.	3.3	3
17	Facilitated Neural Differentiation of Adipose Tissue–Derived Stem Cells by Electrical Stimulation and Nurr-1 Gene Transduction. Cell Transplantation, 2016, 25, 1177-1191.	2.5	12
18	Effect of perfluorotributylamine-enriched alginate on nucleus pulposus cell: Implications for intervertebral disc regeneration. Biomaterials, 2016, 82, 34-47.	11.4	38

#	Article	IF	CITATIONS
19	Activation of Schwann cells in vitro by magnetic nanocomposites via applied magnetic field. International Journal of Nanomedicine, 2015, 10, 43.	6.7	34
20	Adipose-Derived Stromal Cells Protect Intervertebral Disc Cells in Compression: Implications for Stem Cell Regenerative Disc Therapy. International Journal of Biological Sciences, 2015, 11, 133-143.	6.4	40
21	c-Jun Gene-Modified Schwann Cells: Upregulating Multiple Neurotrophic Factors and Promoting Neurite Outgrowth. Tissue Engineering - Part A, 2015, 21, 1409-1421.	3.1	57