
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2622992/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Novel Axial Field Flux-Switching Permanent Magnet Wind Power Generator. IEEE Transactions on Magnetics, 2011, 47, 4457-4460.	2.1	124
2	Ultralarge Gain Step-Up Coupled-Inductor DC–DC Converter With an Asymmetric Voltage Multiplier Network for a Sustainable Energy System. IEEE Transactions on Power Electronics, 2017, 32, 6896-6903.	7.9	95
3	High Step-Up Interleaved dc–dc Converter With Asymmetric Voltage Multiplier Cell and Coupled Inductor. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 4209-4222.	5.4	61
4	Novel Dual-Rotor Axial Field Flux-Switching Permanent Magnet Machine. IEEE Transactions on Magnetics, 2012, 48, 4232-4235.	2.1	46
5	Cogging Torque Reduction of Axial-Field Flux-Switching Permanent Magnet Machine by Rotor Tooth Notching. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	46
6	Three-Vector-Based Low-Complexity Model Predictive Direct Power Control Strategy for PWM Rectifier Without Voltage Sensors. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7, 240-251.	5.4	45
7	A Family of High Step-Up Cascade DC–DC Converters With Clamped Circuits. IEEE Transactions on Power Electronics, 2020, 35, 4819-4834.	7.9	44
8	Rotor Structure on Reducing Demagnetization of Magnet and Torque Ripple in a PMa-synRM With Ferrite Permanent Magnet. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	41
9	Static Characteristics Analysis and Experimental Study of a Novel Axial Field Flux-Switching Permanent Magnet Generator. IEEE Transactions on Magnetics, 2012, 48, 4212-4215.	2.1	37
10	Cogging Torque Reduction of a Hybrid Axial Field Flux-Switching Permanent-Magnet Machine With Three Methods. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	37
11	Dual-Skew Magnet for Cogging Torque Minimization of Axial Flux PMSM With Segmented Stator. IEEE Transactions on Magnetics, 2020, 56, 1-6.	2.1	37
12	Design and Analysis of Halbach Ironless Flywheel BLDC Motor/Generators. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	34
13	Analysis of a Double Stator Linear Rotary Permanent Magnet Motor With Orthogonally Arrayed Permanent Magnets. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	33
14	Novel Fault-Tolerant Design of Axial Field Flux-Switching Permanent Magnet Machine. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-4.	1.7	30
15	Design and Analysis of a Double-Stator Linear–Rotary Permanent-Magnet Motor. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-4.	1.7	29
16	Design and Analysis of Novel Hybrid-Excited Axial Field Flux-Switching Permanent Magnet Machines. IEEE Transactions on Applied Superconductivity, 2016, , 1-1.	1.7	29
17	Offline Inductance Identification of IPMSM With Sequence-Pulse Injection. IEEE Transactions on Industrial Informatics, 2019, 15, 6127-6135.	11.3	29
18	Cogging Torque Reduction of Axial Field Flux-Switching Permanent Magnet Machine by Adding Magnetic Bridge in Stator Tooth. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.7	26

#	Article	IF	CITATIONS
19	High stepâ€up DC–DC converter with low power device voltage stress for a distributed generation system. IET Power Electronics, 2018, 11, 1955-1963.	2.1	24
20	Vector Control of a Hybrid Axial Field Flux-Switching Permanent Magnet Machine Based on Particle Swarm Optimization. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	23
21	Analysis of Axial Field Flux-Switching Memory Machine Based on 3-D Magnetic Equivalent Circuit Network Considering Magnetic Hysteresis. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	23
22	AC Copper Losses Analysis of the Ironless Brushless DC Motor used in a Flywheel Energy Storage System. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	22
23	Static Characteristics of a Novel Axial Field Flux-Switching Permanent Magnet Motor with Three Stator Structures. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	20
24	Minimum opperâ€loss control of hybrid excited axial field fluxâ€switching machine. IET Electric Power Applications, 2016, 10, 82-90.	1.8	20
25	Orthogonal Magnetic Field Analysis of a Double-Stator Linear-Rotary Permanent Magnet Motor With Orthogonally Arrayed Permanent Magnets. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	20
26	A Novel Stator Cooling Structure for Yokeless and Segmented Armature Axial Flux Machine with Heat Pipe. Energies, 2021, 14, 5717.	3.1	18
27	Calculation and Analysis of Rotor Eddy Current Loss of Permanent Magnet-Inductor Hybrid Excited Synchronous Generator. IEEE Transactions on Magnetics, 2013, 49, 2389-2392.	2.1	17
28	ANALYSIS OF COGGING TORQUE REDUCTION TECHNIQUES IN AXIAL FIELD FLUX-SWITCHING PERMANENT MAGNET MACHINE. IEEE Transactions on Applied Superconductivity, 2016, , 1-1.	1.7	17
29	Analysis and optimization of EMF waveform of a novel axial field flux-switching permanent magnet machine. , 2011, , .		13
30	A Novel High Power Density Permanent-Magnet Synchronous Machine With Wide Speed Range. IEEE Transactions on Magnetics, 2020, 56, 1-6.	2.1	13
31	Analysis and Comparison of Axial Field Flux-Switching Permanent Magnet Machines With Three Different Stator Cores. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-6.	1.7	12
32	Endâ€effects analysis and experimental study of a double stator linearâ€rotary permanent magnet motor with long mover. IET Electric Power Applications, 2017, 11, 1601-1609.	1.8	12
33	Flux-Weakening Control Combined With Magnetization State Manipulation of Hybrid Permanent Magnet Axial Field Flux-Switching Memory Machine. IEEE Transactions on Energy Conversion, 2018, 33, 2210-2219.	5.2	12
34	A Family of High Step–Up DC–DC Converters With N _c Step-Up Cells and M–Source Clamped Circuits. IEEE Access, 2021, 9, 65947-65966.	4.2	12
35	Multi-Objective Optimization of an Air-Cored Axial Flux Permanent Magnet Synchronous Machine with Segmented PMs based on Support Vector Machine and Genetic Algorithm. , 2019, , .		11
36	Iron Loss in Permanent Magnet-Inductor Hybrid Excitation Synchronous Generator. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	10

#	Article	IF	CITATIONS
37	Cogging Torque Reduction in Double-Rotor Hybrid Excited Axial Switched-Flux Permanent Magnet Machine. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	10
38	Influence of rotor pole number on optimal parameters in e-core axial field flux-switching permanent magnet machine. , 2013, , .		9
39	Rotor design techniques for reducing the cogging torque in a novel dual-rotor axial field flux-switching permanent magnet machine. , 2014, , .		9
40	Design and Optimization of an External Rotor Ironless BLDCM Used in a Flywheel Energy Storage System. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	9
41	Indirect Analytical Modeling and Analysis of V-Shaped Interior PM Synchronous Machine. IEEE Access, 2019, 7, 173786-173795.	4.2	9
42	Design of a Novel Axial Flux Rotor Consequent-Pole Permanent Magnet Machine. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-6.	1.7	9
43	Model Predictive Torque Control of a Hybrid Excited Axial Field Flux-Switching Permanent Magnet Machine. IEEE Access, 2020, 8, 33703-33712.	4.2	8
44	Comparative Study of E- and U-core Modular Dual-Stator Axial-Field Flux-Switching Permanent Magnet Motors With Different Stator/Rotor-Pole Combinations Based on Flux Modulation Principle. IEEE Access, 2021, 9, 78635-78647.	4.2	8
45	Magnetization State Regulation Characteristic Study of Series Hybrid Permanent Magnet Axial Field Flux-Switching Memory Machine. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-6.	1.7	7
46	High stepâ€up DC–DC converter with three capacitors clamped circuits for reduced out capacitor stress. IET Power Electronics, 2020, 13, 1974-1983.	2.1	7
47	Influence of Rotor-Pole Number on Electromagnetic Performance of Novel Double-Rotor Hybrid Excited Axial Switched-Flux Permanent-Magnet Machines for EV/HEV Applications. IEEE Transactions on Magnetics, 2020, 56, 1-6.	2.1	7
48	Maximum torque output control of hybrid permanent magnet axial field flux-switching memory machine. , 2017, , .		6
49	Design and Optimization of an Outer-Rotor Permanent Magnet Synchronous Machine With an Amorphous Stator Core. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.7	6
50	Synchronous Control Strategy with Input Voltage Feedforward for a Four-Switch Buck-Boost Converter Used in a Variable-Speed PMSG Energy Storage System. Electronics (Switzerland), 2021, 10, 2375.	3.1	6
51	Analysis of Air-Gap Magnetic Field in Homopolar Inductor Alternator by Analytical Method and FEM. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	5
52	Fuzzy Logic Based Model Predictive Direct Power Control of Three Phase PWM Rectifier. , 2018, , .		5
53	Design, Analysis and Model Predictive Control of an Axial Field Switched-Flux Permanent Magnet Machine for Electric Vehicle/Hybrid Electric Vehicle Applications. Energies, 2018, 11, 1859.	3.1	5
54	Design of a Novel Stator Water-cooling System for Yokeless and Segmented Armature Axial Flux		5

Machine., 2021,,.

#	Article	IF	CITATIONS
55	Analysis of the end-effects in double stator linear-rotary permanent magnet motor with long mover. , 2016, , .		4
56	Off-line Stator Resistance Identification for PMSM with Pulse Signal Injection avoiding the Dead-time Effect. , 2019, , .		4
57	A Rotor Cooling Enhanced Method for Axial Flux Permanent Magnet Synchronous Machine With Housing-Cooling. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	4
58	Influence of design parameters on output torque of axial field flux-switching permanent magnet machine. , 2013, , .		3
59	Stator-flux-oriented vector control of hybrid excited axial field flux-switching machine. , 2015, , .		3
60	Design and analysis of a hybrid permanent magnet axial field flux-switching memory machine. , 2016, , .		3
61	Comparative study of flux-regulation method for stator permanent magnet memory machine. , 2017, , .		3
62	Flux Regulation Characteristic Study of Hybrid Permanent Magnet Axial Field Flux-Switching Memory Machine Based on Quantitative Flux Regulaion Pulse. , 2018, , .		3
63	Three-Vector-Based Model Predictive Direct Power Control Strategy for PWM Rectifier. , 2018, , .		3
64	Fast Initial Rotor Position Estimation for IPMSM With Unipolar Sequence-Pulse Injection. IEEE Transactions on Energy Conversion, 2021, 36, 3545-3554.	5.2	3
65	Comparative Analysis of Dual-Rotor Modular Stator Axial-Flux Permanent Magnet Machines With Different Rotor Topologies. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	3
66	An Online Estimation Method for Both Stator Inductance and Rotor Flux Linkage of SPMSM Without Dead-Time Influence. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 1627-1638.	5.4	3
67	A Novel Three-Vector-Based Model Predictive Direct Power Control for Three-Phase PWM Rectifier. Electronics (Switzerland), 2021, 10, 2579.	3.1	3
68	Comparison of electromagnetic performance on E-core axial field flux-switching permanent magnet machines. , 2014, , .		2
69	Design and analysis of outer-rotor permanent magnet synchronous machine with amorphous stator core. , 2017, , .		2
70	A Double Stator Axial Field Flux-Switching Memory Machine with Series Permanent Magnet and DC Field Winding. , 2018, , .		2
71	A Cooling Enhanced Method for Axial Flux Permanent Magnet Synchronous Machine. , 2020, , .		2
72	Design and Analysis of Dual-Rotor Modular-Stator Hybrid-Excited Axial-Flux Permanent Magnet Vernier Machine. Energies, 2022, 15, 1458.	3.1	2

#	Article	IF	CITATIONS
73	A new grid-connected system for axial field flux-switching permanent magnet wind power generator. , 2011, , .		1
74	Influence of rotor design parameters on static characteristics of a novel Hybrid Axial Field Flux-Switching Permanent Magnet machine. , 2014, , .		1
75	Research on the stability of a wide input AC-DC converter used in high-speed low-voltage generator. , 2014, , .		1
76	Flux-weakening performance of series permanent magnet memory machine. , 2017, , .		1
77	Influence of Rotor-Pole Number on Electromagnetic Performance of Novel Double-Rotor Hybrid Excited Axial Switched-Flux Permanent Magnet Machines for EV/HEV Applications. , 2018, , .		1
78	A Novel High Power Density Permanent Magnet Synchronous Machine with Wide Speed Range. , 2018, , .		1
79	High Step-Up Boost Converter With Asymmetric Voltage Multiplier cell for Distributed PV Generation Systems. , 2019, , .		1
80	Online multiâ€parameter estimation of permanent magnet synchronous machine with stepâ€pulse injection. IET Electric Power Applications, 2021, 15, 186-199.	1.8	1
81	Investigation of the Torque Production Mechanism of Dual-Stator Axial-Field Flux-Switching Permanent Magnet Motors. Energies, 2021, 14, 5498.	3.1	1
82	Variable Magnetic Characteristic Analysis of Series Hybrid Permanent Magnet Magnetic Circuit Using Low Coercive Force Permanent Magnet. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-4.	1.7	1
83	A Ripple-free Input Current Boost Converter With Asymmetric Voltage Multiplier cell for Distributed PV Generation Systems. , 2020, , .		1
84	Variable Magnet Analysis of the Series Hybrid Permanent Magnet Magnetic Circuit with AlNiCo. , 2020, ,		1
85	Comprehensive Comparison of Two Fault Tolerant Axial Field Modular Flux-Switching Permanent Magnet Machines with Different Stator and Rotor Pole-Pairs Combinations. Machines, 2022, 10, 201.	2.2	1
86	A Novel Stator Resistance Online Identification method based on ADRC. , 2021, , .		1
87	Influence of ferromagnetic pole-pieces on magnetic transmission for converting between rotary and rectilinear motion. , 2015, , .		0
88	AC Copper Losses Analysis of the Ironless BLDCM Used in a Flywheel Energy Storage System. , 2016, , .		0
89	Design and Analysis of Magnetic Transmission for Converting Between Rotary and Rectilinear Motion. , 2016, , .		0
90	Static characteristics analysis of a dual-rotor axial field flux-switching permanent magnet machine. , 2017, , .		0

#	Article	IF	CITATIONS
91	Direct Input Power Control for Drive System of Single-Phase to Three-Phase Power Converter Without Electrolytic Capacitor. , 2018, , .		0
92	Dual-Skew Magnet in Cogging Torque Minimization of YASA Machine. , 2018, , .		0
93	Model Predictive Torque Control of a Hybrid Excited Axial Field Flux-Switching Permanent Magnet Machine with Reduced Torque Ripple. , 2018, , .		0
94	Unit Commitment with Concentrating Solar Power Plant Considering Receiver Operation Mode. , 2021, , .		0
95	Influence of Different Rotor Structures on Axial Flux Permanent Magnet Machine with Segmented Stator. , 2020, , .		0