
AntÃ³nio Francisco AmbrÃ³sio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2622864/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Profiling Microglia in a Mouse Model of Machado–Joseph Disease. Biomedicines, 2022, 10, 237.	3.2	3
2	Intraocular implants loaded with A3R agonist rescue retinal ganglion cells from ischemic damage. Journal of Controlled Release, 2022, 343, 469-481.	9.9	8
3	The Duration of Stress Determines Sex Specificities in the Vulnerability to Depression and in the Morphologic Remodeling of Neurons and Microglia. Frontiers in Behavioral Neuroscience, 2022, 16, 834821.	2.0	8
4	Lab-on-a-chip technologies for minimally invasive molecular sensing of diabetic retinopathy. Lab on A Chip, 2022, , .	6.0	0
5	Putative Biomarkers in Tears for Diabetic Retinopathy Diagnosis. Frontiers in Medicine, 2022, 9, .	2.6	15
6	Microglial Depletion Has No Impact on Disease Progression in a Mouse Model of Machado–Joseph Disease. Cells, 2022, 11, 2022.	4.1	3
7	The value of choroidal thickness in diabetic macular oedema is contradictory. Acta Ophthalmologica, 2021, 99, e281-e282.	1.1	2
8	Retina and Brain Display Early and Differential Molecular and Cellular Changes in the 3xTg-AD Mouse Model of Alzheimer's Disease. Molecular Neurobiology, 2021, 58, 3043-3060.	4.0	10
9	Longitudinal normative OCT retinal thickness data for wild-type mice, and characterization of changes in the 3×Tg-AD mice model of Alzheimer's disease. Aging, 2021, 13, 9433-9454.	3.1	8
10	Resilience to stress and sex-specific remodeling of microglia and neuronal morphology in a rat model of anxiety and anhedonia. Neurobiology of Stress, 2021, 14, 100302.	4.0	22
11	Microglial Extracellular Vesicles as Vehicles for Neurodegeneration Spreading. Biomolecules, 2021, 11, 770.	4.0	31
12	Sexâ€specific changes in peripheral metabolism in a model of chronic anxiety induced by prenatal stress. European Journal of Clinical Investigation, 2021, 51, e13639.	3.4	5
13	TRAP1 in Oxidative Stress and Neurodegeneration. Antioxidants, 2021, 10, 1829.	5.1	12
14	Neuropeptide Y system mRNA expression changes in the hippocampus of a type I diabetes rat model. Annals of Anatomy, 2020, 227, 151419.	1.9	2
15	Microglia cytoarchitecture in the brain of adenosine A _{2A} receptor knockout mice: Brain region and sex specificities. European Journal of Neuroscience, 2020, 51, 1377-1387.	2.6	16
16	Choroidal and retinal structural, cellular and vascular changes in a rat model of Type 2 diabetes. Biomedicine and Pharmacotherapy, 2020, 132, 110811.	5.6	11
17	The Benefits of Flavonoids in Diabetic Retinopathy. Nutrients, 2020, 12, 3169.	4.1	32
18	Activation of Adenosine A3 Receptor Inhibits Microglia Reactivity Elicited by Elevated Pressure. International Journal of Molecular Sciences, 2020, 21, 7218.	4.1	13

#	Article	IF	CITATIONS
19	Inflammatory cells proliferate in the choroid and retina without choroidal thickness change in early Type 1 diabetes. Experimental Eye Research, 2020, 199, 108195.	2.6	7
20	Extracellular Vesicles and MicroRNA: Putative Role in Diagnosis and Treatment of Diabetic Retinopathy. Antioxidants, 2020, 9, 705.	5.1	23
21	Microglia Dysfunction Caused by the Loss of Rhoa Disrupts Neuronal Physiology and Leads to Neurodegeneration. Cell Reports, 2020, 31, 107796.	6.4	59
22	Sexual dimorphism of the adult human retina assessed by optical coherence tomography. Health and Technology, 2020, 10, 913-924.	3.6	3
23	Emerging Trends in Nanomedicine for Improving Ocular Drug Delivery: Light-Responsive Nanoparticles, Mesoporous Silica Nanoparticles, and Contact Lenses. ACS Biomaterials Science and Engineering, 2020, 6, 6587-6597.	5.2	32
24	PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathologica Communications, 2020, 8, 189.	5.2	204
25	Microglia Contribution to the Regulation of the Retinal and Choroidal Vasculature in Age-Related Macular Degeneration. Cells, 2020, 9, 1217.	4.1	39
26	Sex differences in offspring neurodevelopment, cognitive performance and microglia morphology associated with maternal diabetes: Putative targets for insulin therapy. Brain, Behavior, & Immunity - Health, 2020, 5, 100075.	2.5	13
27	Characterization of the retinal changes of the 3×Tg-AD mouse model of Alzheimer's disease. Health and Technology, 2020, 10, 875-883.	3.6	4
28	Transient gain of function of cannabinoid CB1 receptors in the control of frontocortical glucose consumption in a rat model of Type-1 diabetes. Brain Research Bulletin, 2020, 161, 106-115.	3.0	3
29	Activation of adenosine A3 receptor protects retinal ganglion cells from degeneration induced by ocular hypertension. Cell Death and Disease, 2020, 11, 401.	6.3	15
30	Exosomes derived from microglia exposed to elevated pressure amplify the neuroinflammatory response in retinal cells. Glia, 2020, 68, 2705-2724.	4.9	26
31	Keep an eye on adenosine: Its role in retinal inflammation. , 2020, 210, 107513.		34
32	Microglial Activation in the Retina of a Triple-Transgenic Alzheimer's Disease Mouse Model (3xTg-AD). International Journal of Molecular Sciences, 2020, 21, 816.	4.1	29
33	Neuroprotective Strategies for Retinal Ganglion Cell Degeneration: Current Status and Challenges Ahead. International Journal of Molecular Sciences, 2020, 21, 2262.	4.1	68
34	Sexual Dimorphism of the Adult Human Retina Assessed by Optical Coherence Tomography. IFMBE Proceedings, 2020, , 1830-1834.	0.3	1
35	Characterization of the Retinal Changes of the 3xTg-AD Mouse Model of Alzheimer's Disease. IFMBE Proceedings, 2020, , 1816-1821.	0.3	0
36	Impairment of Axonal Transport in Diabetes: Focus on the Putative Mechanisms Underlying Peripheral and Central Neuropathies. Molecular Neurobiology, 2019, 56, 2202-2210.	4.0	4

#	Article	IF	CITATIONS
37	Interplay Between Macular Retinal Changes and White Matter Integrity in Early Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 70, 723-732.	2.6	11
38	Blockade of microglial adenosine A _{2A} receptor suppresses elevated pressureâ€induced inflammation, oxidative stress, and cell death in retinal cells. Glia, 2019, 67, 896-914.	4.9	51
39	Retinal texture biomarkers may help to discriminate between Alzheimer's, Parkinson's, and healthy controls. PLoS ONE, 2019, 14, e0218826.	2.5	54
40	Electrochemical Immunosensor for TNFα-Mediated Inflammatory Disease Screening. ACS Chemical Neuroscience, 2019, 10, 2676-2682.	3.5	19
41	A longitudinal multimodal in vivo molecular imaging study of the 3xTg-AD mouse model shows progressive early hippocampal and taurine loss. Human Molecular Genetics, 2019, 28, 2174-2188.	2.9	40
42	Intravitreal injection of adenosine A2A receptor antagonist reduces neuroinflammation, vascular leakage and cell death in the retina of diabetic mice. Scientific Reports, 2019, 9, 17207.	3.3	18
43	Retinal thinning of inner sub-layers is associated with cortical atrophy in a mouse model of Alzheimer's disease: a longitudinal multimodal in vivo study. Alzheimer's Research and Therapy, 2019, 11, 90.	6.2	32
44	Porous poly(ε-caprolactone) implants: A novel strategy for efficient intraocular drug delivery. Journal of Controlled Release, 2019, 316, 331-348.	9.9	50
45	Diminished O-GlcNAcylation in Alzheimer's disease is strongly correlated with mitochondrial anomalies. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2048-2059.	3.8	48
46	Regionâ€specific control of microglia by adenosine A _{2A} receptors: uncoupling anxiety and associated cognitive deficits in female rats. Glia, 2019, 67, 182-192.	4.9	29
47	The Retina as a Window or Mirror of the Brain Changes Detected in Alzheimer's Disease: Critical Aspects to Unravel. Molecular Neurobiology, 2019, 56, 5416-5435.	4.0	53
48	In Vivo Characterization of Corneal Changes in a Type 1 Diabetic Animal Model. Ultrasound in Medicine and Biology, 2019, 45, 823-832.	1.5	1
49	The dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin ameliorates retinal endothelial cell dysfunction triggered by inflammation. Biomedicine and Pharmacotherapy, 2018, 102, 833-838.	5.6	18
50	Blockade of microglial adenosine A2A receptor impacts inflammatory mechanisms, reduces ARPE-19 cell dysfunction and prevents photoreceptor loss in vitro. Scientific Reports, 2018, 8, 2272.	3.3	44
51	Impact of type 1 diabetes mellitus and sitagliptin treatment on the neuropeptide Y system of rat retina. Clinical and Experimental Ophthalmology, 2018, 46, 783-795.	2.6	3
52	[Regular Paper] Texture Biomarkers of Alzheimer's Disease and Disease Progression in the Mouse Retina. , 2018, , .		7
53	Evaluation of markers of outcome in real-world treatment of diabetic macular edema. Eye and Vision (London, England), 2018, 5, 27.	3.0	27
54	Sweet Stress: Coping With Vascular Dysfunction in Diabetic Retinopathy. Frontiers in Physiology, 2018, 9, 820.	2.8	59

#	Article	IF	CITATIONS
55	Elevated Pressure Changes the Purinergic System of Microglial Cells. Frontiers in Pharmacology, 2018, 9, 16.	3.5	17
56	Adenosine A2A Receptor Blockade Modulates Glucocorticoid-Induced Morphological Alterations in Axons, But Not in Dendrites, of Hippocampal Neurons. Frontiers in Pharmacology, 2018, 9, 219.	3.5	3
57	Choroidal thickness changes stratified by outcome in real-world treatment of diabetic macular edema. Graefe's Archive for Clinical and Experimental Ophthalmology, 2018, 256, 1857-1865.	1.9	17
58	The Quadruple Helix-Based Innovation Model of Reference Sites for Active and Healthy Ageing in Europe: The Ageing@Coimbra Case Study. Frontiers in Medicine, 2018, 5, 132.	2.6	16
59	Subtle thinning of retinal layers without overt vascular and inflammatory alterations in a rat model of prediabetes. Molecular Vision, 2018, 24, 353-366.	1.1	11
60	Opening eyes to nanomedicine: Where we are, challenges and expectations on nanotherapy for diabetic retinopathy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2101-2113.	3.3	27
61	Caveolin-1–mediated internalization of the vitamin C transporter SVCT2 in microglia triggers an inflammatory phenotype. Science Signaling, 2017, 10, .	3.6	63
62	Impact of Neuroinflammation on Hippocampal Neurogenesis: Relevance to Aging and Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 60, S161-S168.	2.6	54
63	Calcium Dobesilate Is Protective against Inflammation and Oxidative/Nitrosative Stress in the Retina of a Type 1 Diabetic Rat Model. Ophthalmic Research, 2017, 58, 150-161.	1.9	16
64	Viewing the choroid: where we stand, challenges and contradictions in diabetic retinopathy and diabetic macular oedema. Acta Ophthalmologica, 2017, 95, 446-459.	1.1	57
65	Modeling Human Glaucoma: Lessons from the in vitro Models. Ophthalmic Research, 2017, 57, 77-86.	1.9	32
66	Adenosine A2A receptor regulation of microglia morphological remodeling-gender bias in physiology and in a model of chronic anxiety. Molecular Psychiatry, 2017, 22, 1035-1043.	7.9	69
67	Treatment with A2A receptor antagonist KW6002 and caffeine intake regulate microglia reactivity and protect retina against transient ischemic damage. Cell Death and Disease, 2017, 8, e3065-e3065.	6.3	53
68	Having a Coffee Break: The Impact of Caffeine Consumption on Microglia-Mediated Inflammation in Neurodegenerative Diseases. Mediators of Inflammation, 2017, 2017, 1-12.	3.0	57
69	Elevated Glucose and Interleukin-1 <i>β</i> Differentially Affect Retinal Microglial Cell Proliferation. Mediators of Inflammation, 2017, 2017, 1-11.	3.0	29
70	Retinal Biomarkers of Alzheimer's Disease: Insights from Transgenic Mouse Models. Lecture Notes in Computer Science, 2017, , 541-550.	1.3	4
71	mTOR and Neuroinflammation. , 2016, , 317-329.		6
72	Protective Effect of a GLP-1 Analog on Ischemia-Reperfusion Induced Blood–Retinal Barrier Breakdown and Inflammation. , 2016, 57, 2584.		41

#	Article	IF	CITATIONS
73	The Adenosinergic System in Diabetic Retinopathy. Journal of Diabetes Research, 2016, 2016, 1-8.	2.3	14
74	Obesity and brain inflammation: a focus on multiple sclerosis. Obesity Reviews, 2016, 17, 211-224.	6.5	28
75	Therapeutic Opportunities for Caffeine and A _{2A} Receptor Antagonists in Retinal Diseases. Ophthalmic Research, 2016, 55, 212-218.	1.9	26
76	Caffeine administration prevents retinal neuroinflammation and loss of retinal ganglion cells in an an animal model of glaucoma. Scientific Reports, 2016, 6, 27532.	3.3	54
77	Inside the Diabetic Brain: Role of Different Players Involved in Cognitive Decline. ACS Chemical Neuroscience, 2016, 7, 131-142.	3.5	118
78	Selective A2A receptor antagonist prevents microglia-mediated neuroinflammation and protects retinal ganglion cells from high intraocular pressure–induced transient ischemic injury. Translational Research, 2016, 169, 112-128.	5.0	74
79	Effects of drugs of abuse on the central neuropeptide Y system. Addiction Biology, 2016, 21, 755-765.	2.6	30
80	Adenosine A2AR blockade prevents neuroinflammation-induced death of retinal ganglion cells caused by elevated pressure. Journal of Neuroinflammation, 2015, 12, 115.	7.2	73
81	Glia-Mediated Retinal Neuroinflammation as a Biomarker in Alzheimer's Disease. Ophthalmic Research, 2015, 54, 204-211.	1.9	9
82	Sildenafil Acutely Decreases Visual Responses in ON and OFF Retinal Ganglion Cells. , 2015, 56, 2639.		9
83	Contribution of Microglia-Mediated Neuroinflammation to Retinal Degenerative Diseases. Mediators of Inflammation, 2015, 2015, 1-15.	3.0	196
84	Long-term exposure to high glucose increases the content of several exocytotic proteins and of vesicular GABA transporter in cultured retinal neural cells. Neuroscience Letters, 2015, 602, 56-61.	2.1	17
85	Neuropeptide Y system in the retina: From localization to function. Progress in Retinal and Eye Research, 2015, 47, 19-37.	15.5	25
86	Disruption of a Neural Microcircuit in the Rod Pathway of the Mammalian Retina by Diabetes Mellitus. Journal of Neuroscience, 2015, 35, 5422-5433.	3.6	41
87	Diabetic hyperglycemia reduces Ca ²⁺ permeability of extrasynaptic AMPA receptors in All amacrine cells. Journal of Neurophysiology, 2015, 114, 1545-1553.	1.8	21
88	Activation of Neuropeptide Y Receptors Modulates Retinal Ganglion Cell Physiology and Exerts Neuroprotective Actions In Vitro. ASN Neuro, 2015, 7, 175909141559829.	2.7	24
89	Adenosine A 3 receptor activation is neuroprotective against retinal neurodegeneration. Experimental Eye Research, 2015, 140, 65-74.	2.6	49
90	câ€ s rc function is necessary and sufficient for triggering microglial cell activation. Glia, 2015, 63, 497-511.	4.9	43

#	Article	IF	CITATIONS
91	Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling. Frontiers in Cellular Neuroscience, 2014, 8, 343.	3.7	29
92	Role of Microglia Adenosine A2AReceptors in Retinal and Brain Neurodegenerative Diseases. Mediators of Inflammation, 2014, 2014, 1-13.	3.0	66
93	Emerging novel roles of neuropeptide Y in the retina: From neuromodulation to neuroprotection. Progress in Neurobiology, 2014, 112, 70-79.	5.7	23
94	Diabetes induces changes in KIF1A, KIF5B and dynein distribution in the rat retina: Implications for axonal transport. Experimental Eye Research, 2014, 127, 91-103.	2.6	27
95	Dipeptidyl peptidase-Ⅳ inhibition prevents blood–retinal barrier breakdown, inflammation and neuronal cell death in the retina of type 1 diabetic rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1454-1463.	3.8	64
96	Diabetes causes transient changes in the composition and phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and interaction with auxiliary proteins in the rat retina. Molecular Vision, 2014, 20, 894-907.	1.1	5
97	Tauroursodeoxycholic acid protects retinal neural cells from cell death induced by prolonged exposure to elevated glucose. Neuroscience, 2013, 253, 380-388.	2.3	68
98	Methamphetamine-induced nitric oxide promotes vesicular transport in blood–brain barrier endothelial cells. Neuropharmacology, 2013, 65, 74-82.	4.1	71
99	Neuropeptide Y Receptors Y ₁ and Y ₂ are Present in Neurons and Glial Cells in Rat Retinal Cells in Culture. , 2013, 54, 429.		27
100	Evaluation of neurotoxic and neuroprotective pathways affected by antiepileptic drugs in cultured hippocampal neurons. Toxicology in Vitro, 2013, 27, 2193-2202.	2.4	8
101	Differential Contribution of the Guanylyl Cyclase-Cyclic GMP-Protein Kinase G Pathway to the Proliferation of Neural Stem Cells Stimulated by Nitric Oxide. NeuroSignals, 2013, 21, 1-13.	0.9	23
102	Neuropeptide Y receptors activation protects rat retinal neural cells against necrotic and apoptotic cell death induced by glutamate. Cell Death and Disease, 2013, 4, e636-e636.	6.3	54
103	Regulation of claudins in blood-tissue barriers under physiological and pathological states. Tissue Barriers, 2013, 1, e24782.	3.2	68
104	Diabetes Alters KIF1A and KIF5B Motor Proteins in the Hippocampus. PLoS ONE, 2013, 8, e65515.	2.5	44
105	Nitric Oxide Modulates Sodium Vitamin C Transporter 2 (SVCT-2) Protein Expression via Protein Kinase G (PKG) and Nuclear Factor-IºB (NF-IºB). Journal of Biological Chemistry, 2012, 287, 3860-3872.	3.4	42
106	Elevated glucose concentration changes the content and cellular localization of AMPA receptors in the hippocampus. Neuroscience, 2012, 219, 23-32.	2.3	19
107	Contribution of TNF receptor 1 to retinal neural cell death induced by elevated glucose. Molecular and Cellular Neurosciences, 2012, 50, 113-123.	2.2	42
108	Calcium-permeable α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptors Trigger Neuronal Nitric-oxide Synthase Activation to Promote Nerve Cell Death in an Src Kinase-dependent Fashion. Journal of Biological Chemistry, 2012, 287, 38680-38694.	3.4	24

#	Article	IF	CITATIONS
109	Heme Oxygenase-1 Protects Retinal Endothelial Cells against High Glucose- and Oxidative/Nitrosative Stress-Induced Toxicity. PLoS ONE, 2012, 7, e42428.	2.5	83
110	Protective effects of the dipeptidyl peptidase IV inhibitor sitagliptin in the blood–retinal barrier in a type 2 diabetes animal model. Diabetes, Obesity and Metabolism, 2012, 14, 454-463.	4.4	74
111	Nitric Oxide Synthase in Retinal Vascular Diseases. , 2012, , 529-544.		Ο
112	Effects of 3,4-Methylenedioxymethamphetamine Administration on Retinal Physiology in the Rat. PLoS ONE, 2011, 6, e29583.	2.5	9
113	Diabetes induces early transient changes in the content of vesicular transporters and no major effects in neurotransmitter release in hippocampus and retina. Brain Research, 2011, 1383, 257-269.	2.2	27
114	Methamphetamine transiently increases the blood–brain barrier permeability in the hippocampus: Role of tight junction proteins and matrix metalloproteinase-9. Brain Research, 2011, 1411, 28-40.	2.2	110
115	High glucose enhances intracellular Ca2+ responses triggered by purinergic stimulation in retinal neurons and microglia. Brain Research, 2010, 1316, 129-138.	2.2	37
116	Nitric Oxide Stimulates the Proliferation of Neural Stem Cells Bypassing the Epidermal Growth Factor Receptor. Stem Cells, 2010, 28, 1219-1230.	3.2	71
117	Calcium Dobesilate Inhibits the Alterations in Tight Junction Proteins and Leukocyte Adhesion to Retinal Endothelial Cells Induced by Diabetes. Diabetes, 2010, 59, 2637-2645.	0.6	119
118	Evaluation of the Impact of Diabetes on Retinal Metabolites by NMR Spectroscopy. Current Eye Research, 2010, 35, 992-1001.	1.5	12
119	High glucose and interleukin-1β downregulate interleukin-1 type I receptor (IL-1RI) in retinal endothelial cells by enhancing its degradation by a lysosome-dependent mechanism. Cytokine, 2010, 49, 279-286.	3.2	12
120	Diabetes differentially affects the content of exocytotic proteins in hippocampal and retinal nerve terminals. Neuroscience, 2010, 169, 1589-1600.	2.3	44
121	Long-term exposure to high glucose induces changes in the content and distribution of some exocytotic proteins in cultured hippocampal neurons. Neuroscience, 2010, 171, 981-992.	2.3	36
122	TNF-α Signals Through PKCζ/NF-κB to Alter the Tight Junction Complex and Increase Retinal Endothelial Cell Permeability. Diabetes, 2010, 59, 2872-2882.	0.6	343
123	High glucose changes extracellular adenosine triphosphate levels in rat retinal cultures. Journal of Neuroscience Research, 2009, 87, 1375-1380.	2.9	43
124	Neuropeptide Y inhibits [Ca ²⁺] _i changes in rat retinal neurons through NPY Y ₁ , Y ₄ , and Y ₅ receptors. Journal of Neurochemistry, 2009, 109, 1508-1515.	3.9	18
125	High glucose and oxidative/nitrosative stress conditions induce apoptosis in retinal endothelial cells by a caspase-independent pathway. Experimental Eye Research, 2009, 88, 983-991.	2.6	51
126	Diabetes changes the levels of ionotropic glutamate receptors in the rat retina. Molecular Vision, 2009, 15, 1620-30.	1.1	47

#	Article	IF	CITATIONS
127	Differential Contribution of L-, N-, and P/Q-type Calcium Channels to [Ca2+]i Changes Evoked by Kainate in Hippocampal Neurons. Neurochemical Research, 2008, 33, 1501-1508.	3.3	3
128	Diabetes changes ionotropic glutamate receptor subunit expression level in the human retina. Brain Research, 2008, 1198, 153-159.	2.2	40
129	Neuropeptide Y protects retinal neural cells against cell death induced by ecstasy. Neuroscience, 2008, 152, 97-105.	2.3	39
130	Neuropeptide Y stimulates retinal neural cell proliferation – involvement of nitric oxide. Journal of Neurochemistry, 2008, 105, 2501-2510.	3.9	46
131	Müller Cells Do Not Influence Leukocyte Adhesion to Retinal Endothelial Cells. Ocular Immunology and Inflammation, 2008, 16, 173-179.	1.8	2
132	NPY in rat retina is present in neurons, in endothelial cells and also in microglial and Müller cells. Neurochemistry International, 2007, 50, 757-763.	3.8	30
133	Inducible Nitric Oxide Synthase Isoform Is a Key Mediator of Leukostasis and Blood-Retinal Barrier Breakdown in Diabetic Retinopathy. , 2007, 48, 5257.		220
134	Changes in calcium dynamics following the reversal of the sodium-calcium exchanger have a key role in AMPA receptor-mediated neurodegeneration via calpain activation in hippocampal neurons. Cell Death and Differentiation, 2007, 14, 1635-1646.	11.2	41
135	High glucose induces caspase-independent cell death in retinal neural cells. Neurobiology of Disease, 2007, 25, 464-472.	4.4	67
136	Diabetic Retinopathy, Inflammation, and Proteasome. , 2007, , 475-502.		0
137	Modification of adenosine A1 and A2A receptor density in the hippocampus of streptozotocin-induced diabetic rats. Neurochemistry International, 2006, 48, 144-150.	3.8	60
138	High glucose and diabetes increase the release of [3H]-d-aspartate in retinal cell cultures and in rat retinas. Neurochemistry International, 2006, 48, 453-458.	3.8	39
139	Elevated Glucose Changes the Expression of Ionotropic Glutamate Receptor Subunits and Impairs Calcium Homeostasis in Retinal Neural Cells. , 2006, 47, 4130.		52
140	Early calpain-mediated proteolysis following AMPA receptor activation compromises neuronal survival in cultured hippocampal neurons. Journal of Neurochemistry, 2005, 92, 996-996.	3.9	0
141	Old and New Drug Targets in Diabetic Retinopathy: From Biochemical Changes to Inflammation and Neurodegeneration. CNS and Neurological Disorders, 2005, 4, 421-434.	4.3	39
142	Early calpain-mediated proteolysis following AMPA receptor activation compromises neuronal survival in cultured hippocampal neurons. Journal of Neurochemistry, 2004, 91, 1322-1331.	3.9	46
143	Neurotoxicity Induced by Antiepileptic Drugs in Cultured Hippocampal Neurons: A Comparative Study between Carbamazepine, Oxcarbazepine, and Two New Putative Antiepileptic Drugs, BIA 2-024 and BIA 2-093. Epilepsia, 2004, 45, 1498-1505.	5.1	53
144	Nitric oxide inhibits complex I following AMPA receptor activation via peroxynitrite. NeuroReport, 2004, 15, 2007-2011.	1.2	6

#	Article	IF	CITATIONS
145	Neuronal nitric oxide synthase proteolysis limits the involvement of nitric oxide in kainateâ€induced neurotoxicity in hippocampal neurons. Journal of Neurochemistry, 2003, 85, 791-800.	3.9	24
146	Cobalt staining of hippocampal neurons mediated by non-desensitizing activation of AMPA but not kainate receptors. NeuroReport, 2003, 14, 847-850.	1.2	11
147	Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024. Neurochemical Research, 2002, 27, 121-130.	3.3	250
148	Role of kainate receptor activation and desensitization on the [Ca2+]ichanges in cultured rat hippocampal neurons. Journal of Neuroscience Research, 2001, 65, 378-386.	2.9	23
149	Inhibition of glutamate release by BIA 2-093 and BIA 2-024, two novel derivatives of carbamazepine, due to blockade of sodium but not calcium channels11Abbreviations: AED, antiepileptic drug; CBZ, carbamazepine; OXC, oxcarbazepine; and 4-AP, 4-aminopyridine Biochemical Pharmacology, 2001, 61, 1271-1275.	4.4	45
150	Role of desensitization of AMPA receptors on the neuronal viability and on the [Ca2+]ichanges in cultured rat hippocampal neurons. European Journal of Neuroscience, 2000, 12, 2021-2031.	2.6	62
151	Neurotoxic/neuroprotective profile of carbamazepine, oxcarbazepine and two new putative antiepileptic drugs, BIA 2-093 and BIA 2-024. European Journal of Pharmacology, 2000, 406, 191-201.	3.5	45
152	Carbamazepine inhibits L-type Ca2+ channels in cultured rat hippocampal neurons stimulated with glutamate receptor agonists. Neuropharmacology, 1999, 38, 1349-1359.	4.1	79
153	Increase of the intracellular Ca2+ concentration mediated by transport of glutamate into rat hippocampal synaptosomes: characterization of the activated voltage sensitive Ca2+ channels. Neurochemistry International, 1998, 32, 7-16.	3.8	11
154	Inhibition of N-, P/Q- and other types of Ca2+ channels in rat hippocampal nerve terminals by the adenosine A1 receptor. European Journal of Pharmacology, 1997, 340, 301-310.	3.5	64
155	Modulation of Glutamate Release from Rat Hippocampal Synaptosomes by Nitric Oxide. Nitric Oxide - Biology and Chemistry, 1997, 1, 315-329.	2.7	42
156	Modulation of Ca2+ channels by activation of adenosine A1 receptors in rat striatal glutamatergic nerve terminals. Neuroscience Letters, 1996, 220, 163-166.	2.1	25
157	Involvement of class A calcium channels in the KCl induced Ca2+ influx in hippocampal synaptosomes. Brain Research, 1995, 696, 242-245.	2.2	14
158	A functionally active presynaptic high-affinity kainate receptor in the rat hippocampal CA3 subregion. Neuroscience Letters, 1995, 185, 83-86.	2.1	39
159	Retinal Aging in 3× Tg-AD Mice Model of Alzheimer's Disease. Frontiers in Aging Neuroscience, 0, 14, .	3.4	4