David A Wardle

List of Publications by Citations

Source: https://exaly.com/author-pdf/2622655/david-a-wardle-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

54,574 230 354 97 h-index g-index citations papers 8.2 62,996 7.76 371 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
354	EFFECTS OF BIODIVERSITY ON ECOSYSTEM FUNCTIONING: A CONSENSUS OF CURRENT KNOWLEDGE. <i>Ecological Monographs</i> , 2005 , 75, 3-35	9	4768
353	Biodiversity loss and its impact on humanity. <i>Nature</i> , 2012 , 486, 59-67	50.4	3613
352	Biodiversity and ecosystem functioning: current knowledge and future challenges. <i>Science</i> , 2001 , 294, 804-8	33.3	2942
351	Ecological linkages between aboveground and belowground biota. <i>Science</i> , 2004 , 304, 1629-33	33.3	2790
350	Trophic downgrading of planet Earth. <i>Science</i> , 2011 , 333, 301-6	33.3	2365
349	Impacts of biological invasions: what's what and the way forward. <i>Trends in Ecology and Evolution</i> , 2013 , 28, 58-66	10.9	1694
348	Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. <i>Ecology Letters</i> , 2008 , 11, 1065-71	10	1605
347	Global change and species interactions in terrestrial ecosystems. <i>Ecology Letters</i> , 2008 , 11, 1351-63	10	1533
346	Spatial soil ecology. <i>Trends in Ecology and Evolution</i> , 2002 , 17, 177-183	10.9	935
345	The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. <i>Biological Reviews</i> , 2013 , 88, 15-30	13.5	931
344	Roots and associated fungi drive long-term carbon sequestration in boreal forest. <i>Science</i> , 2013 , 339, 1615-8	33.3	866
343	A COMPARATIVE ASSESSMENT OF FACTORS WHICH INFLUENCE MICROBIAL BIOMASS CARBON AND NITROGEN LEVELS IN SOIL. <i>Biological Reviews</i> , 1992 , 67, 321-358	13.5	845
342	PlantBoil feedbacks: the past, the present and future challenges. <i>Journal of Ecology</i> , 2013 , 101, 265-276	5 6	841
341	Ecosystem properties and forest decline in contrasting long-term chronosequences. <i>Science</i> , 2004 , 305, 509-13	33.3	765
340	HERBIVORE-MEDIATED LINKAGES BETWEEN ABOVEGROUND AND BELOWGROUND COMMUNITIES. <i>Ecology</i> , 2003 , 84, 2258-2268	4.6	710
339	The use of chronosequences in studies of ecological succession and soil development. <i>Journal of Ecology</i> , 2010 , 98, 725-736	6	687
338	Towards an assessment of multiple ecosystem processes and services via functional traits. <i>Biodiversity and Conservation</i> , 2010 , 19, 2873-2893	3.4	597

337	A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. <i>Soil Biology and Biochemistry</i> , 1995 , 27, 1601-1610	7.5	587
336	Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. <i>Soil Biology and Biochemistry</i> , 1998 , 30, 1867-1878	7.5	522
335	Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. <i>Frontiers in Ecology and the Environment</i> , 2005 , 3, 421-428	5.5	519
334	The Influence of Island Area on Ecosystem Properties. <i>Science</i> , 1997 , 277, 1296-1299	33.3	494
333	Biodiversity and Plant Litter: Experimental Evidence Which Does Not Support the View That Enhanced Species Richness Improves Ecosystem Function. <i>Oikos</i> , 1997 , 79, 247	4	490
332	Interactions between Aboveground and Belowground Biodiversity in Terrestrial Ecosystems: Patterns, Mechanisms, and Feedbacks. <i>BioScience</i> , 2000 , 50, 1049	5.7	486
331	A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. <i>Ecology Letters</i> , 2015 , 18, 1406-19	10	485
330	Identification of 100 fundamental ecological questions. <i>Journal of Ecology</i> , 2013 , 101, 58-67	6	445
329	Fire-derived charcoal causes loss of forest humus. <i>Science</i> , 2008 , 320, 629	33.3	431
328	The influence of biotic interactions on soil biodiversity. <i>Ecology Letters</i> , 2006 , 9, 870-86	10	423
327	PLANT REMOVALS IN PERENNIAL GRASSLAND: VEGETATION DYNAMICS, DECOMPOSERS, SOIL BIODIVERSITY, AND ECOSYSTEM PROPERTIES. <i>Ecological Monographs</i> , 1999 , 69, 535-568	9	357
326	Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. <i>New Phytologist</i> , 2015 , 205, 1525-1536	9.8	339
325	Functional diversity revealed by removal experiments. <i>Trends in Ecology and Evolution</i> , 2003 , 18, 140-14	1 6 10.9	338
324	Community and Ecosystem Responses to Elevational Gradients: Processes, Mechanisms, and Insights for Global Change. <i>Annual Review of Ecology, Evolution, and Systematics</i> , 2013 , 44, 261-280	13.5	328
323	Terrestrial ecosystem responses to species gains and losses. <i>Science</i> , 2011 , 332, 1273-7	33.3	315
322	Soil nematode abundance and functional group composition at a global scale. <i>Nature</i> , 2019 , 572, 194-19	9 & 0.4	305
321	How understanding aboveground-belowground linkages can assist restoration ecology. <i>Trends in Ecology and Evolution</i> , 2010 , 25, 670-9	10.9	297
320	Key Ecological Function of Charcoal from Wildfire in the Boreal Forest. <i>Oikos</i> , 1996 , 77, 10	4	287

319	Long-term ecological dynamics: reciprocal insights from natural and anthropogenic gradients. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2005 , 272, 2105-15	4.4	281
318	Understanding ecosystem retrogression. <i>Ecological Monographs</i> , 2010 , 80, 509-529	9	280
317	Linking the influence and dependence of people on biodiversity across scales. <i>Nature</i> , 2017 , 546, 65-72	50.4	274
316	Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. <i>Functional Ecology</i> , 2002 , 16, 585-595	5.6	273
315	Linking litter decomposition of above- and below-ground organs to plantBoil feedbacks worldwide. <i>Journal of Ecology</i> , 2013 , 101, 943-952	6	265
314	Microbial ecology of biological invasions. <i>ISME Journal</i> , 2007 , 1, 28-37	11.9	265
313	New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. <i>Soil Biology and Biochemistry</i> , 2004 , 36, 1907-1912	7·5	265
312	Is "Sampling Effect" a Problem for Experiments Investigating Biodiversity-Ecosystem Function Relationships?. <i>Oikos</i> , 1999 , 87, 403	4	255
311	Controls of temporal variability of the soil microbial biomass: A global-scale synthesis. <i>Soil Biology and Biochemistry</i> , 1998 , 30, 1627-1637	7.5	251
310	Above- and below-ground impacts of introduced predators in seabird-dominated island ecosystems. <i>Ecology Letters</i> , 2006 , 9, 1299-307	10	250
309	Impacts of Disturbance on Detritus Food Webs in Agro-Ecosystems of Contrasting Tillage and Weed Management Practices. <i>Advances in Ecological Research</i> , 1995 , 26, 105-185	4.6	248
308	Long-term effects of wildfire on ecosystem properties across an island area gradient. <i>Science</i> , 2003 , 300, 972-5	33.3	246
307	INTRODUCED BROWSING MAMMALS IN NEW ZEALAND NATURAL FORESTS: ABOVEGROUND AND BELOWGROUND CONSEQUENCES. <i>Ecological Monographs</i> , 2001 , 71, 587-614	9	243
306	The ecosystem and evolutionary contexts of allelopathy. <i>Trends in Ecology and Evolution</i> , 2011 , 26, 655-	62 0.9	234
305	The charcoal effect in Boreal forests: mechanisms and ecological consequences. <i>Oecologia</i> , 1998 , 115, 419-426	2.9	228
304	The influence of plant litter diversity on decomposer abundance and diversity. <i>Soil Biology and Biochemistry</i> , 2006 , 38, 1052-1062	7.5	225
303	An ecosystem-level perspective of allelopathy. <i>Biological Reviews</i> , 1998 , 73, 305-319	13.5	221
302	Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems?. <i>Journal of Ecology</i> , 1998 , 86, 405-420	6	217

301	Effects of species and functional group loss on island ecosystem properties. <i>Nature</i> , 2005 , 435, 806-10	50.4	215
300	Invasion Science: A Horizon Scan of Emerging Challenges and Opportunities. <i>Trends in Ecology and Evolution</i> , 2017 , 32, 464-474	10.9	207
299	Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. <i>Functional Ecology</i> , 2013 , 27, 1254-1261	5.6	206
298	Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. <i>Oikos</i> , 2001 , 93, 353-364	4	195
297	Empirical and theoretical challenges in aboveground-belowground ecology. <i>Oecologia</i> , 2009 , 161, 1-14	2.9	194
296	Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. <i>Science</i> , 2017 , 355, 173-176	33.3	190
295	Experimental demonstration that plant diversity reduces invasibility Levidence of a biological mechanism or a consequence of sampling effect?. <i>Oikos</i> , 2001 , 95, 161-170	4	178
294	The way forward in biochar research: targeting trade-offs between the potential wins. <i>GCB Bioenergy</i> , 2015 , 7, 1-13	5.6	177
293	The dual importance of competition and predation as regulatory forces in terrestrial ecosystems: evidence from decomposer food-webs. <i>Oecologia</i> , 1993 , 93, 303-306	2.9	172
292	The response of a three trophic level soil food web to the identity and diversity of plant species and functional groups. <i>Oikos</i> , 2003 , 102, 45-56	4	156
291	Climate, soil and plant functional types as drivers of global fine-root trait variation. <i>Journal of Ecology</i> , 2017 , 105, 1182-1196	6	155
2 90	Determinants of litter mixing effects in a Swedish boreal forest. <i>Soil Biology and Biochemistry</i> , 2003 , 35, 827-835	7.5	155
289	Stability of ecosystem properties in response to above-ground functional group richness and composition. <i>Oikos</i> , 2000 , 89, 11-23	4	152
288	Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment. <i>Journal of Ecology</i> , 2012 , 100, 16-30	6	151
287	The hare, the tortoise and the crocodile: the ecology of angiosperm dominance, conifer persistence and fern filtering. <i>Journal of Ecology</i> , 2005 , 93, 918-935	6	151
286	Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity. <i>Journal of Ecology</i> , 2012 , 100, 678-689	6	149
285	Ecological consequences of carbon substrate identity and diversity in a laboratory study. <i>Ecology</i> , 2006 , 87, 580-93	4.6	147
284	Non-natives: 141 scientists object. <i>Nature</i> , 2011 , 475, 36	50.4	142

283	Litter quality and environmental controls of home-field advantage effects on litter decomposition. <i>Oikos</i> , 2015 , 124, 187-195	4	133
282	Changes in the Microbial Biomass and Metabolic Quotient During Leaf Litter Succession in Some New Zealand Forest and Scrubland Ecosystems. <i>Functional Ecology</i> , 1993 , 7, 346	5.6	133
281	How does pedogenesis drive plant diversity?. Trends in Ecology and Evolution, 2013, 28, 331-40	10.9	130
2 80	Effects of Global Changes on Above- and Belowground Biodiversity in Terrestrial Ecosystems: Implications for Ecosystem Functioning. <i>BioScience</i> , 2000 , 50, 1089	5.7	130
279	Elevation alters ecosystem properties across temperate treelines globally. <i>Nature</i> , 2017 , 542, 91-95	50.4	126
278	The Overlooked Role of Facilitation in Biodiversity Experiments. <i>Trends in Ecology and Evolution</i> , 2017 , 32, 383-390	10.9	123
277	Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change. <i>Biogeosciences</i> , 2011 , 8, 2047-2061	4.6	122
276	Effects of three herbicides on soil microbial biomass and activity. <i>Plant and Soil</i> , 1990 , 122, 21-28	4.2	122
275	The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils. <i>Soil Biology and Biochemistry</i> , 2019 , 128, 111-114	7.5	122
274	Biodiversity in forest carbon sequestration initiatives: not just a side benefit. <i>Current Opinion in Environmental Sustainability</i> , 2009 , 1, 55-60	7.2	120
273	A test of the hierarchical model of litter decomposition. <i>Nature Ecology and Evolution</i> , 2017 , 1, 1836-184	45 2.3	116
272	Punching above their weight: low-biomass non-native plant species alter soil properties during primary succession. <i>Oikos</i> , 2009 , 118, 1001-1014	4	116
271	Response of soil microbial biomass dynamics, activity and plant litter decomposition to agricultural intensification over a seven-year period. <i>Soil Biology and Biochemistry</i> , 1999 , 31, 1707-1720	7.5	115
270	Global distribution of earthworm diversity. <i>Science</i> , 2019 , 366, 480-485	33.3	113
269	The quest for a contemporary ecological dimension to soil biology. <i>Soil Biology and Biochemistry</i> , 1996 , 28, 1549-1554	7.5	111
268	Responses of soil nematode populations, community structure, diversity and temporal variability to agricultural intensification over a seven-year period. <i>Soil Biology and Biochemistry</i> , 1999 , 31, 1721-1733	7.5	110
267	The detritus food-web and the diversity of soil fauna as indicators of disturbance regimes in agro-ecosystems. <i>Plant and Soil</i> , 1995 , 170, 35-43	4.2	110
266	Effects of biological invasions on forest carbon sequestration. <i>Global Change Biology</i> , 2010 , 16, 732-746	11.4	108

(1990-2017)

265	How lichens impact on terrestrial community and ecosystem properties. <i>Biological Reviews</i> , 2017 , 92, 1720-1738	13.5	107
264	Changes in soil microbial and nematode communities during ecosystem decline across a long-term chronosequence. <i>Soil Biology and Biochemistry</i> , 2005 , 37, 1289-1301	7.5	104
263	Biological invasions in forest ecosystems. <i>Biological Invasions</i> , 2017 , 19, 3437-3458	2.7	103
262	Effects of Plant Species Diversity and Composition on Nitrogen Cycling and the Trace Gas Balance of Soils. <i>Plant and Soil</i> , 2006 , 282, 83-98	4.2	103
261	Effects of agricultural intensification on soil-associated arthropod population dynamics, community structure, diversity and temporal variability over a seven-year period. <i>Soil Biology and Biochemistry</i> , 1999 , 31, 1691-1706	7·5	103
2 60	Relationships between nematodes, soil microbial biomass and weed-management strategies in maize and asparagus cropping systems. <i>Soil Biology and Biochemistry</i> , 1993 , 25, 869-876	7.5	101
259	Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. <i>Global Ecology and Biogeography</i> , 2014 , 23, 1046-1057	6.1	100
258	Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. <i>Science Advances</i> , 2019 , 5, eaaz1834	14.3	98
257	Do experiments exploring plant diversity-ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems?. <i>Journal of Vegetation Science</i> , 2016 , 27, 646-653	3.1	94
256	Synergistic Effects of Grassland Plant Spcies on Soil Microbial Biomass and Activity: Implications for Ecosystem-Level Effects of Enriched Plant Diversity. <i>Functional Ecology</i> , 1996 , 10, 410	5.6	94
255	Island biology and ecosystem functioning in epiphytic soil communities. <i>Science</i> , 2003 , 301, 1717-20	33.3	93
254	Ecology. Disentangling global soil fungal diversity. <i>Science</i> , 2014 , 346, 1052-3	33.3	89
253	Why is the strength of relationships between pairs of methods for estimating soil microbial biomass often so variable?. <i>Soil Biology and Biochemistry</i> , 1995 , 27, 821-828	7·5	88
252	Trophic relationships in the soil microfood-web: predicting the responses to a changing global environment. <i>Global Change Biology</i> , 1998 , 4, 713-727	11.4	86
251	On similarity among local communities in biodiversity experiments. <i>Oikos</i> , 2001 , 95, 340-348	4	85
250	Plant traits, leaf palatability and litter decomposability for co-occurring woody species differing in invasion status and nitrogen fixation ability. <i>Functional Ecology</i> , 2010 , 24, 513-523	5.6	84
249	Structural equation modelling reveals plant-community drivers of carbon storage in boreal forest ecosystems. <i>Biology Letters</i> , 2010 , 6, 116-9	3.6	84
248	Interactions between microclimatic variables and the soil microbial biomass. <i>Biology and Fertility of Soils</i> , 1990 , 9, 273-280	6.1	84

247	Predation of seabirds by invasive rats: multiple indirect consequences for invertebrate communities. <i>Oikos</i> , 2009 , 118, 420-430	4	83
246	Effects of defoliation intensity on soil food-web properties in an experimental grassland community. <i>Oikos</i> , 2001 , 92, 333-343	4	83
245	Effects of Plant Litter Species Composition and Diversity on the Boreal Forest Plant-Soil System. <i>Oikos</i> , 1999 , 86, 16	4	83
244	Interactions with soil biota shift from negative to positive when a tree species is moved outside its native range. <i>New Phytologist</i> , 2014 , 202, 415-421	9.8	81
243	How soil food webs make plants grow. <i>Trends in Ecology and Evolution</i> , 1999 , 14, 418-420	10.9	81
242	Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression. <i>Functional Ecology</i> , 2007 , 21, 1027-1033	5.6	80
241	Effects of alleviation of ecological stresses on an alpine tundra community over an eight-year period. <i>Oikos</i> , 2002 , 97, 3-17	4	80
240	The response of plant diversity to ecosystem retrogression: evidence from contrasting long-term chronosequences. <i>Oikos</i> , 2008 , 117, 93-103	4	77
239	Development of the Decomposer Food-Web, Trophic Relationships, and Ecosystem Properties during a Three-Year Primary Succession in Sawdust. <i>Oikos</i> , 1995 , 73, 155	4	77
238	Human-induced changes in large herbivorous mammal density: the consequences for decomposers. <i>Frontiers in Ecology and the Environment</i> , 2004 , 2, 145-153	5.5	73
237	The effect of reindeer grazing on decomposition, mineralization and soil biota in a dry oligotrophic Scots pine forest. <i>Oikos</i> , 2000 , 90, 301-310	4	73
236	Direct and indirect effects of rats: does rat eradication restore ecosystem functioning of New Zealand seabird islands?. <i>Biological Invasions</i> , 2009 , 11, 1671-1688	2.7	72
235	Changes in the community structure and diversity of soil invertebrates across the Franz Josef Glacier chronosequence. <i>Soil Biology and Biochemistry</i> , 2008 , 40, 1069-1081	7.5	72
234	Plant Species Composition Effects on Belowground Properties and the Resistance and Resilience of the Soil Microflora to a Drying Disturbance. <i>Plant and Soil</i> , 2005 , 278, 205-221	4.2	72
233	Differential facilitation by a nitrogen-fixing shrub during primary succession influences relative performance of canopy tree species. <i>Journal of Ecology</i> , 2001 , 89, 861-875	6	71
232	Interpretation of microbial biomass measurements for soil quality assessment in humid temperate regions. <i>Canadian Journal of Soil Science</i> , 1999 , 79, 507-520	1.4	69
231	Comparison of osmotic and allelopathic effects of grass leaf extracts on grass seed germination and radicle elongation. <i>Plant and Soil</i> , 1992 , 140, 315-319	4.2	69
230	Influence of the herbicide glyphosate on soil microbial community structure. <i>Plant and Soil</i> , 1990 , 122, 29-37	4.2	68

229	Reconstructing Disturbances and Their Biogeochemical Consequences over Multiple Timescales. <i>BioScience</i> , 2014 , 64, 105-116	5.7	66	
228	Response of soil microbial biomass and plant litter decomposition to weed management strategies in maize and asparagus cropping systems. <i>Soil Biology and Biochemistry</i> , 1993 , 25, 857-868	7.5	66	
227	Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity. <i>Science Advances</i> , 2020 , 6, eabc1176	14.3	66	
226	Plant succession as an integrator of contrasting ecological time scales. <i>Trends in Ecology and Evolution</i> , 2014 , 29, 504-10	10.9	65	
225	Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. <i>Nature Ecology and Evolution</i> , 2018 , 2, 269-278	12.3	62	
224	Boreal feather mosses secrete chemical signals to gain nitrogen. <i>New Phytologist</i> , 2013 , 200, 54-60	9.8	62	
223	Interactive effects of vegetation type and elevation on aboveground and belowground properties in a subarctic tundra. <i>Oikos</i> , 2011 , 120, 128-142	4	62	
222	Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. <i>Soil Biology and Biochemistry</i> , 2013 , 62, 157-164	7.5	61	
221	Composition and diversity of nifH genes of nitrogen-fixing cyanobacteria associated with boreal forest feather mosses. <i>New Phytologist</i> , 2011 , 192, 507-17	9.8	60	
220	Among- and within-species variation in plant litter decomposition in contrasting long-term chronosequences. <i>Functional Ecology</i> , 2009 , 23, 442-453	5.6	60	
219	Context dependency of litter-mixing effects on decomposition and nutrient release across a long-term chronosequence. <i>Oikos</i> , 2008 , 117, 1674-1682	4	60	
218	Soil-mediated effects of invasive ungulates on native tree seedlings. <i>Journal of Ecology</i> , 2014 , 102, 622-	6 631	59	
217	Within- and across-species responses of plant traits and litter decomposition to elevation across contrasting vegetation types in subarctic tundra. <i>PLoS ONE</i> , 2011 , 6, e27056	3.7	59	
216	Plant and microbial responses to nitrogen and phosphorus addition across an elevational gradient in subarctic tundra. <i>Ecology</i> , 2014 , 95, 1819-35	4.6	58	
215	Linking aboveground and belowground communities: the indirect influence of aphid species identity and diversity on a three trophic level soil food web. <i>Oikos</i> , 2004 , 107, 283-294	4	58	
214	Plasticity in above- and belowground resource acquisition traits in response to single and multiple environmental factors in three tree species. <i>Ecology and Evolution</i> , 2013 , 3, 1065-78	2.8	57	
213	Context-dependent changes in the resistance and resilience of soil microbes to an experimental disturbance for three primary plant chronosequences. <i>Oikos</i> , 2006 , 112, 196-208	4	57	
212	Environmental factors and traits that drive plant litter decomposition do not determine home-field advantage effects. <i>Functional Ecology</i> , 2015 , 29, 981-991	5.6	56	

211	Interference effects of the invasive plantCarduus nutans L. against the nitrogen fixation ability ofTrifolium repens L <i>Plant and Soil</i> , 1994 , 163, 287-297	4.2	56
210	Long-term effects of species loss on community properties across contrasting ecosystems. <i>Nature</i> , 2018 , 557, 710-713	50.4	56
209	Impacts of invasive biota in forest ecosystems in an abovegroundBelowground context. <i>Biological Invasions</i> , 2017 , 19, 3301-3316	2.7	55
208	Responses of communities of soil organisms and plants to soil aging at two contrasting long-term chronosequences. <i>Soil Biology and Biochemistry</i> , 2017 , 106, 69-79	7.5	55
207	Traits underpinning desiccation resistance explain distribution patterns of terrestrial isopods. <i>Oecologia</i> , 2013 , 172, 667-77	2.9	55
206	Patterns of invertebrate density and taxonomic richness across gradients of area, isolation, and vegetation diversity in a lake-island system. <i>Ecography</i> , 2009 , 32, 963-972	6.5	55
205	Microclimate within litter bags of different mesh size: Implications for the <code>Brthropod</code> effectIbn litter decomposition. <i>Soil Biology and Biochemistry</i> , 2013 , 58, 147-152	7·5	54
204	Soil fertility shapes belowground food webs across a regional climate gradient. <i>Ecology Letters</i> , 2017 , 20, 1273-1284	10	54
203	Trickle-down effects of aboveground trophic cascades on the soil food web. <i>Oikos</i> , 2005 , 111, 348-358	4	54
202	Response of the soil microbial biomass to glucose, and selective inhibitors, across a soil moisture gradient. <i>Soil Biology and Biochemistry</i> , 1990 , 22, 825-834	7.5	54
201	Comparison of physiological techniques for estimating the response of the soil microbial biomass to soil moisture. <i>Soil Biology and Biochemistry</i> , 1990 , 22, 817-823	7.5	53
200	PlantBoil feedbacks of exotic plant species across life forms: a meta-analysis. <i>Biological Invasions</i> , 2014 , 16, 2551-2561	2.7	50
199	Decoupled long-term effects of nutrient enrichment on aboveground and belowground properties in subalpine tundra. <i>Ecology</i> , 2013 , 94, 904-919	4.6	50
198	Long-term aboveground and belowground consequences of red wood ant exclusion in boreal forest. <i>Ecology</i> , 2011 , 92, 645-56	4.6	49
197	Interspecific interactions and biomass allocation among grassland plant species. <i>Oikos</i> , 2003 , 100, 497-5	5 Q 6	49
196	Response of soil food-web structure to defoliation of different plant species combinations in an experimental grassland community. <i>Soil Biology and Biochemistry</i> , 2001 , 33, 205-214	7.5	49
195	Response of feather moss associated N2 fixation and litter decomposition to variations in simulated rainfall intensity and frequency. <i>Oikos</i> , 2011 , 120, 570-581	4	48
194	Loss of a dominant nitrogen-fixing shrub in primary succession: consequences for plant and below-ground communities. <i>Journal of Ecology</i> , 2012 , 100, 1074-1084	6	47

(2001-1997)

Competition and Herbivory in Establishing Grassland Communities: Implications for Plant Biomass, Species Diversity and Soil Microbial Activity. <i>Oikos</i> , 1997 , 80, 470	4	47	
The impact of secondary compounds and functional characteristics on lichen palatability and decomposition. <i>Journal of Ecology</i> , 2013 , 101, 689-700	6	46	
Seasonal variation in nifH abundance and expression of cyanobacterial communities associated with boreal feather mosses. <i>ISME Journal</i> , 2016 , 10, 2198-208	11.9	45	
A more reliable design for biodiversity study?. <i>Nature</i> , 1998 , 394, 30-30	50.4	45	
Allelopathic potential of vegetative and flowering ragwort (Senecio jacobaea L.) plants against associated pasture species. <i>Plant and Soil</i> , 1994 , 164, 61-68	4.2	45	
Stimulation of boreal tree seedling growth by wood-derived charcoal: effects of charcoal properties, seedling species and soil fertility. <i>Functional Ecology</i> , 2014 , 28, 766-775	5.6	44	
Soil phosphorus and microbial response to a long-term wildfire chronosequence in northern Sweden. <i>Biogeochemistry</i> , 2009 , 95, 199-213	3.8	44	
Influence of plant age on the allelopathic potential of nodding thistle (Carduus nutans L.) against pasture grasses and legumes. <i>Weed Research</i> , 1993 , 33, 69-78	1.9	44	
Explaining within-community variation in plant biomass allocation: a balance between organ biomass and morphology above vs below ground?. <i>Journal of Vegetation Science</i> , 2015 , 26, 431-440	3.1	43	
The effect of altered macroclimate on N-fixation by boreal feather mosses. <i>Biology Letters</i> , 2012 , 8, 80	5-§ .6	43	
Indirect effects of invasive predators on litter decomposition and nutrient resorption on seabird-dominated islands. <i>Ecology</i> , 2009 , 90, 452-64	4.6	43	
Aboveground and belowground legacies of native Sami land use on boreal forest in northern Sweden 100 years after abandonment. <i>Ecology</i> , 2014 , 95, 963-77	4.6	42	
Effect of fertilizer, herbicide and grazing management of pastures on plant and soil communities. <i>Applied Soil Ecology</i> , 2010 , 45, 175-186	5	42	
A multitrophic perspective on biodiversity-ecosystem functioning research. <i>Advances in Ecological Research</i> , 2019 , 61, 1-54	4.6	41	
Relative importance of the effect of 2,4-D, glyphosate, and environmental variables on the soil microbial biomass. <i>Plant and Soil</i> , 1991 , 134, 209-219	4.2	41	
Effects of elevation and nitrogen and phosphorus fertilization on plant defence compounds in subarctic tundra heath vegetation. <i>Functional Ecology</i> , 2016 , 30, 314-325	5.6	40	
Trophic interactions in a changing world: modelling abovegroundBelowground interactions. <i>Basic and Applied Ecology</i> , 2004 , 5, 515-528	3.2	40	
	The impact of secondary compounds and functional characteristics on lichen palatability and decomposition. <i>Journal of Ecology</i> , 2013, 101, 689-700 Seasonal variation in nifH abundance and expression of cyanobacterial communities associated with boreal feather mosses. <i>ISME Journal</i> , 2016, 10, 2198-208 A more reliable design for biodiversity study?. <i>Nature</i> , 1998, 394, 30-30 Allelopathic potential of vegetative and flowering ragwort (Senecio jacobaea L.) plants against associated pasture species. <i>Plant and Soil</i> , 1994, 164, 61-68 Stimulation of boreal tree seedling growth by wood-derived charcoal: effects of charcoal properties, seedling species and soil fertility. <i>Functional Ecology</i> , 2014, 28, 766-775 Soil phosphorus and microbial response to a long-term wildfire chronosequence in northern Sweden. <i>Biogeochemistry</i> , 2009, 95, 199-213 Influence of plant age on the allelopathic potential of nodding thistle (Carduus nutans L.) against pasture grasses and legumes. <i>Weed Research</i> , 1993, 33, 69-78 Explaining within-community variation in plant biomass allocation: a balance between organ biomass and morphology above vs below ground?. <i>Journal of Vegetation Science</i> , 2015, 26, 431-440 The effect of altered macroclimate on N-fixation by boreal feather mosses. <i>Biology Letters</i> , 2012, 8, 80 Indirect effects of invasive predators on litter decomposition and nutrient resorption on seabird-dominated islands. <i>Ecology</i> , 2009, 90, 452-64 Aboveground and belowground legacies of native Sami land use on boreal forest in northern Sweden 100 years after abandonment. <i>Ecology</i> , 2014, 95, 963-77 Effect of fertilizer, herbicide and grazing management of pastures on plant and soil communities. <i>Applied Soil Ecology</i> , 2010, 45, 175-186 A multitrophic perspective on biodiversity-ecosystem functioning research. <i>Advances in Ecological Research</i> , 2019, 61, 1-54 Relative importance of the effect of 2,4-D, glyphosate, and environmental variables on the soil microbial biomass. <i>Plant and Soil</i> , 1991, 134, 209-219 Effects	Species Diversity and Soil Microbial Activity. Oikos, 1997, 80, 470 The impact of secondary compounds and functional characteristics on lichen palatability and decomposition. Journal of Ecology, 2013, 101, 689-700 Seasonal variation in nifH abundance and expression of cyanobacterial communities associated with boreal feather mosses. ISME Journal, 2016, 10, 2198-208 A more reliable design for biodiversity study?. Nature, 1998, 394, 30-30 50-4 Allelopathic potential of vegetative and flowering ragwort (Senecio jacobaea L.) plants against associated pasture species. Plant and Soil, 1994, 164, 61-68 Stimulation of boreal tree seedling growth by wood-derived charcoal: effects of charcoal properties, seedling species and soil fertility. Functional Ecology, 2014, 28, 766-775 Soil phosphorus and microbial response to a long-term wildfire chronosequence in northern Sweden. Biogeochemistry, 2009, 95, 199-213 Influence of plant age on the allelopathic potential of nodding thistle (Carduus nutans L.) against pasture grasses and legumes. Weed Research, 1993, 33, 69-78 Explaining within-community variation in plant biomass allocation: a balance between organ biomass and morphology above vs below ground?. Journal of Vegetation Science, 2015, 26, 431-440 The effect of altered macroclimate on N-Fixation by boreal feather mosses. Biology Letters, 2012, 8, 805-86 Indirect effects of invasive predators on litter decomposition and nutrient resorption on seabird-dominated islands. Ecology, 2009, 90, 452-64 Aboveground and belowground legacies of native Sami land use on boreal forest in northern Sweden 100 years after abandonment. Ecology, 2014, 95, 963-77 Effect of fertilizer, herbicide and grazing management of pastures on plant and soil communities. Applied Soil Ecology, 2010, 45, 175-186 50 Apulation of the effect of 2,4-D, glyphosate, and environmental variables on the soil microbial biomass. Plant and Soil, 1991, 134, 209-219 Effects of elevation and nitrogen and phosphorus fertilization on plant defence compound	Species Diversity and Soil Microbial Activity. Oikos, 1997, 80, 470 The impact of secondary compounds and functional characteristics on lichen palatability and decomposition. Journal of Ecology, 2013, 101, 689-700 Seasonal variation in nifH abundance and expression of cyanobacterial communities associated with boreal feather mosses. ISME Journal, 2016, 10, 2198-208 A more reliable design for biodiversity study?. Nature, 1998, 394, 30-30 50-4 45 Allelopathic potential of vegetative and Flowering ragwort (Senecio jacobaea L.) plants against associated pasture species. Plant and Soil, 1994, 164, 61-68 Stimulation of boreal tree seedling growth by wood-derived charcoal; effects of charcoal properties, seedling species and soil fertility. Functional Ecology, 2014, 28, 766-775 Soil phosphorus and microbial response to a long-term wildfire chronosequence in northern Sweden. Biogeochemistry, 2009, 95, 199-213 Influence of plant age on the allelopathic potential of nodding thistle (Carduus nutans L.) against pasture grasses and legumes. Weed Research, 1993, 33, 69-78 Explaining within-community variation in plant biomass allocation: a balance between organ biomass and morphology above vs below ground?. Journal of Vegetation Science, 2015, 26, 431-440 3-1 43 The effect of altered macroclimate on N-fixation by boreal feather mosses. Biology Letters, 2012, 8, 805-86 43 Indirect effects of invasive predators on litter decomposition and nutrient resorption on seabird-dominated islands. Ecology, 2009, 90, 452-64 Aboveground and belowground legacies of native Sami land use on boreal forest in northern Sweden 100 years after abandonment. Ecology, 2014, 95, 963-77 Effect of fertilizer, herbicide and grazing management of pastures on plant and soil communities. Applied Soil Ecology, 2010, 45, 175-186 A multitrophic perspective on biodiversity-ecosystem functioning research. Advances in Ecological Research, 2019, 61, 1-54 Relative importance of the effect of 2,4-D, glyphosate, and environmental variables on the so

175	Understory plant functional groups and litter species identity are stronger drivers of litter decomposition than warming along a boreal forest post-fire successional gradient. <i>Soil Biology and Biochemistry</i> , 2016 , 98, 159-170	7.5	40
174	Context dependent effects of plant species and functional group loss on vegetation invasibility across an island area gradient. <i>Journal of Ecology</i> , 2008 , 96, 1174-1186	6	39
173	Bioavailable soil phosphorus decreases with increasing elevation in a subarctic tundra landscape. <i>PLoS ONE</i> , 2014 , 9, e92942	3.7	39
172	Contrasting Responses of Soil Microbial and Nematode Communities to Warming and Plant Functional Group Removal Across a Post-fire Boreal Forest Successional Gradient. <i>Ecosystems</i> , 2016 , 19, 339-355	3.9	38
171	Vascular plant removal effects on biological N fixation vary across a boreal forest island gradient. <i>Ecology</i> , 2010 , 91, 1704-14	4.6	38
170	Interspecific competitive interactions between pairs of fungal species in natural substrates. <i>Oecologia</i> , 1993 , 94, 165-172	2.9	37
169	Towards an integrative understanding of soil biodiversity. <i>Biological Reviews</i> , 2020 , 95, 350-364	13.5	37
168	Chemical properties of plant litter in response to elevation: subarctic vegetation challenges phenolic allocation theories. <i>Functional Ecology</i> , 2012 , 26, 1090-1099	5.6	36
167	Influence of the herbicides 2,4-D and glyphosate on soil microbial biomass and activity: A field experiment. <i>Soil Biology and Biochemistry</i> , 1992 , 24, 185-186	7.5	36
166	Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies. <i>New Phytologist</i> , 2020 , 228, 1269-1282	9.8	35
165	The within-species leaf economic spectrum does not predict leaf litter decomposability at either the within-species or whole community levels. <i>Journal of Ecology</i> , 2013 , 101, 1409-1419	6	35
164	Promotion of ecosystem carbon sequestration by invasive predators. <i>Biology Letters</i> , 2007 , 3, 479-82	3.6	35
163	Islands as model systems for understanding how species affect ecosystem properties. <i>Journal of Biogeography</i> , 2002 , 29, 583-591	4.1	35
162	Biodiversity and stability of grassland ecosystem functioning. <i>Oikos</i> , 2003 , 100, 622-623	4	35
161	Plant assemblages do not respond homogenously to local variation in environmental conditions: functional responses differ with species identity and abundance. <i>Journal of Vegetation Science</i> , 2015 , 26, 32-45	3.1	34
160	Resource heterogeneity does not explain the diversity-productivity relationship across a boreal island fertility gradient. <i>Ecography</i> , 2011 , 34, 887-896	6.5	34
159	The influence of the herbicide glyphosate on interspecific interactions between four soil fungal species. <i>Mycological Research</i> , 1992 , 96, 180-186		34
158	The effect of biochar management on soil and plant community properties in a boreal forest. <i>GCB Bioenergy</i> , 2016 , 8, 777-789	5.6	33

157	Microbe-plant competition, allelopathy and arctic plants. <i>Oecologia</i> , 1997 , 109, 291-293	2.9	33
156	Using Network Theory to Understand and Predict Biological Invasions. <i>Trends in Ecology and Evolution</i> , 2019 , 34, 831-843	10.9	32
155	Effects of plant functional group removal on structure and function of soil communities across contrasting ecosystems. <i>Ecology Letters</i> , 2019 , 22, 1095-1103	10	32
154	Differences in endophyte communities of introduced trees depend on the phylogenetic relatedness of the receiving forest. <i>Journal of Ecology</i> , 2016 , 104, 1219-1232	6	32
153	Comparison of plant-soil feedback experimental approaches for testing soil biotic interactions among ecosystems. <i>New Phytologist</i> , 2019 , 221, 577-587	9.8	32
152	Effect of ecosystem retrogression on stable nitrogen and carbon isotopes of plants, soils and consumer organisms in boreal forest islands. <i>Rapid Communications in Mass Spectrometry</i> , 2009 , 23, 189	2-8	32
151	A statistical evaluation of equations for predicting total microbial biomass carbon using physiological and biochemical methods. <i>Agriculture, Ecosystems and Environment</i> , 1991 , 34, 75-86	5.7	31
150	Quantifying multimodal trait distributions improves trait-based predictions of species abundances and functional diversity. <i>Journal of Vegetation Science</i> , 2015 , 26, 46-57	3.1	30
149	Impact of understory mosses and dwarf shrubs on soil micro-arthropods in a boreal forest chronosequence. <i>Plant and Soil</i> , 2014 , 379, 121-133	4.2	30
148	The influence of freshwater-lake subsidies on invertebrates occupying terrestrial vegetation. <i>Acta Oecologica</i> , 2009 , 35, 698-704	1.7	30
147	Belowground and aboveground consequences of interactions between live plant species mixtures and dead organic substrate mixtures. <i>Oikos</i> , 2008 , 117, 439-449	4	30
146	Effects of shading and humus fertility on growth, competition, and ectomycorrhizal colonization of boreal forest tree seedlings. <i>Canadian Journal of Forest Research</i> , 2004 , 34, 2573-2586	1.9	30
145	Direct and Indirect Drivers of Moss Community Structure, Function, and Associated Microfauna Across a Successional Gradient. <i>Ecosystems</i> , 2015 , 18, 154-169	3.9	29
144	Decoupled responses of tree and shrub leaf and litter trait values to ecosystem retrogression across an island area gradient. <i>Plant and Soil</i> , 2013 , 367, 183-197	4.2	29
143	Are functional traits and litter decomposability coordinated across leaves, twigs and wood? A test using temperate rainforest tree species. <i>Oikos</i> , 2013 , 122, 1131-1142	4	29
142	The potential for forest canopy litterfall interception by a dense fern understorey, and the consequences for litter decomposition. <i>Oikos</i> , 2008 , 117, 83-92	4	29
141	No observational evidence for diversity enhancing productivity in Mediterranean shrublands. <i>Oecologia</i> , 2001 , 129, 620-621	2.9	29
140	Impacts of climate on the biodiversity-productivity relationship in natural forests. <i>Nature Communications</i> , 2018 , 9, 5436	17.4	29

139	Variation in home-field advantage and ability in leaf litter decomposition across successional gradients. <i>Functional Ecology</i> , 2018 , 32, 1563-1574	5.6	28
138	Long-term resilience of above- and below ground ecosystem components among contrasting ecosystems. <i>Ecology</i> , 2014 , 95, 1836-49	4.6	28
137	Use of a comparative approach to identify allelopathic potential and relationship between allelopathy bioassays and "competition" experiments for ten grassland and plant species. <i>Journal of Chemical Ecology</i> , 1996 , 22, 933-48	2.7	28
136	Strong invaders are strong defenders - implications for the resistance of invaded communities. <i>Ecology Letters</i> , 2016 , 19, 487-94	10	28
135	Browsing by an invasive herbivore promotes development of plant and soil communities during primary succession. <i>Journal of Ecology</i> , 2016 , 104, 1505-1517	6	27
134	Release of mineral nitrogen from plant root nodules. Soil Biology and Biochemistry, 1991, 23, 827-832	7.5	27
133	Keystone Species: Competition for Honeydew Among Exotic and Indigenous Species 2006 , 281-294		26
132	The soil microbial community response when plants are subjected to water stress and defoliation disturbance. <i>Applied Soil Ecology</i> , 2007 , 37, 139-149	5	26
131	How plant communities influence decomposer communities 2005 , 119-138		26
130	Four priority areas to advance invasion science in the face of rapid environmental change. <i>Environmental Reviews</i> , 2021 , 29, 119-141	4.5	26
129	Towards a framework for understanding the context dependence of impacts of non-native tree species. <i>Functional Ecology</i> , 2020 , 34, 944-955	5.6	25
128	Linkage of plant trait space to successional age and species richness in boreal forest understorey vegetation. <i>Journal of Ecology</i> , 2015 , 103, 1610-1620	6	25
127	Nitrogen niches revealed through species and functional group removal in a boreal shrub community. <i>Ecology</i> , 2012 , 93, 1695-706	4.6	25
126	Within-species variability is the main driver of community-level responses of traits of epiphytes across a long-term chronosequence. <i>Functional Ecology</i> , 2014 , 28, 1513-1522	5.6	24
125	Ecological effects of the invasive weed species Senecio jacobaea L. (ragwort) in a New Zealand pasture. <i>Agriculture, Ecosystems and Environment</i> , 1995 , 56, 19-28	5.7	24
124	Soil handling methods should be selected based on research questions and goals. <i>New Phytologist</i> , 2017 , 216, 18-23	9.8	23
123	Aboveground and belowground effects of single-tree removals in New Zealand rain forest. <i>Ecology</i> , 2008 , 89, 1232-45	4.6	23
122	Nutritional Effects of Seed Fall during Mast Years in Boreal Forest. <i>Oikos</i> , 1999 , 84, 17	4	23

121	Influence of Pasture Forage Species on Seedling Emergence, Growth and Development of Carduus nutans. <i>Journal of Applied Ecology</i> , 1995 , 32, 225	5.8	23
120	Influence of pasture grass and legume swards on seedling emergence and growth of Carduus nutans L. and Cirsium vulgare L <i>Weed Research</i> , 1992 , 32, 119-128	1.9	23
119	Trophic cascades in the bryosphere: the impact of global change factors on top-down control of cyanobacterial N2 -fixation. <i>Ecology Letters</i> , 2016 , 19, 967-76	10	23
118	Coordinated responses of soil communities to elevation in three subarctic vegetation types. <i>Oikos</i> , 2017 , 126, 1586-1599	4	22
117	Micro-arthropod community responses to ecosystem retrogression in boreal forest. <i>Soil Biology and Biochemistry</i> , 2017 , 110, 79-86	7·5	22
116	A global database of soil nematode abundance and functional group composition. <i>Scientific Data</i> , 2020 , 7, 103	8.2	22
115	Biotic and abiotic plantBoil feedback depends on nitrogen-acquisition strategy and shifts during long-term ecosystem development. <i>Journal of Ecology</i> , 2019 , 107, 142-153	6	22
114	Direct and indirect effects of area, energy and habitat heterogeneity on breeding bird communities. <i>Journal of Biogeography</i> , 2011 , 38, 1186-1196	4.1	22
113	Changes in the ratio of twig to foliage in litterfall with species composition, and consequences for decomposition across a long term chronosequence. <i>Oikos</i> , 2006 , 115, 453-462	4	22
112	Linking above-ground and below-ground effects in autotrophic microcosms: effects of shading and defoliation on plant and soil properties. <i>Oikos</i> , 2000 , 89, 577-587	4	22
111	Fate of 14 C from glucose and the herbicide metsulfuronthethyl in a plantBoil microcosm system. <i>Soil Biology and Biochemistry</i> , 2001 , 33, 777-785	7·5	22
110	Contrasting drivers of community-level trait variation for vascular plants, lichens and bryophytes across an elevational gradient. <i>Functional Ecology</i> , 2019 , 33, 2430-2446	5.6	21
109	Soil fertility and disturbance interact to drive contrasting responses of co-occurring native and nonnative species. <i>Ecology</i> , 2016 , 97, 515-29	4.6	21
108	Secondary compounds can reduce the soil micro-arthropod effect on lichen decomposition. <i>Soil Biology and Biochemistry</i> , 2013 , 66, 10-16	7.5	21
107	Plant growth response to direct and indirect temperature effects varies by vegetation type and elevation in a subarctic tundra. <i>Oikos</i> , 2015 , 124, 772-783	4	21
106	The Impact of Moss Species and Biomass on the Growth of Pinus sylvestris Tree Seedlings at Different Precipitation Frequencies. <i>Forests</i> , 2014 , 5, 1931-1951	2.8	21
105	An ecosystem-level perspective of allelopathy. <i>Biological Reviews</i> , 2007 , 73, 305-319	13.5	21
104	Gap size and regeneration in a New Zealand dairy pasture. Austral Ecology, 1992, 17, 169-175	1.5	21

103	Nitrogen fixation rates associated with the feather mosses Pleurozium schreberi and Hylocomium splendens during forest stand development following clear-cutting. <i>Forest Ecology and Management</i> , 2015 , 347, 130-139	3.9	20
102	Changes in stable nitrogen and carbon isotope ratios of plants and soil across a boreal forest fire chronosequence. <i>Plant and Soil</i> , 2013 , 367, 111-119	4.2	20
101	Biodiversity effects in real ecosystems in response to Duffy. Frontiers in Ecology and the Environment, 2010 , 8, 10-11	5.5	20
100	Influence of herbicide applications on the decomposition, microbial biomass, and microbial activity of pasture shoot and root litter. <i>New Zealand Journal of Agricultural Research</i> , 1994 , 37, 29-39	1.9	20
99	Lichen physiological traits and growth forms affect communities of associated invertebrates. <i>Ecology</i> , 2015 , 96, 2394-407	4.6	19
98	Ecosystem retrogression leads to increased insect abundance and herbivory across an island chronosequence. <i>Functional Ecology</i> , 2008 , 22, 816-823	5.6	19
97	Aboveground and belowground responses to quality and heterogeneity of organic inputs to the boreal forest. <i>Oecologia</i> , 2006 , 150, 108-18	2.9	19
96	The influence of soil age on ecosystem structure and function across biomes. <i>Nature Communications</i> , 2020 , 11, 4721	17.4	19
95	Bryophyte traits explain climate-warming effects on tree seedling establishment. <i>Journal of Ecology</i> , 2017 , 105, 496-506	6	18
94	Mortality in Individuals with Subjective Cognitive Decline: Results of the Leipzig Longitudinal Study of the Aged (LEILA75+). <i>Journal of Alzheimerls Disease</i> , 2015 , 48 Suppl 1, S33-42	4.3	18
93	Changes in stable nitrogen and carbon isotope ratios of plants and soil across a boreal forest fire chronosequence. <i>Plant and Soil</i> , 2013 , 364, 315-323	4.2	18
92	Relationships between fungal community composition in decomposing leaf litter and home-field advantage effects. <i>Functional Ecology</i> , 2019 , 33, 1524-1535	5.6	17
91	The effects of the moss layer on the decomposition of intercepted vascular plant litter across a post-fire boreal forest chronosequence. <i>Plant and Soil</i> , 2013 , 367, 199-214	4.2	17
90	Determining the impact of scale insect honeydew, and invasive wasps and rodents, on the decomposer subsystem in a New Zealand beech forest. <i>Biological Invasions</i> , 2010 , 12, 2619-2638	2.7	17
89	A tale of two theories, a chronosequence and a bioindicator of soil quality. <i>Soil Biology and Biochemistry</i> , 2018 , 121, A3-A7	7.5	16
88	The impact of charcoal and soil mixtures on decomposition and soil microbial communities in boreal forest. <i>Applied Soil Ecology</i> , 2016 , 99, 40-50	5	16
87	Contrasting nitrogen and phosphorus dynamics across an elevational gradient for subarctic tundra heath and meadow vegetation. <i>Plant and Soil</i> , 2014 , 383, 387-399	4.2	16
86	Nutrient fluxes from insect herbivory increase during ecosystem retrogression in boreal forest. <i>Ecology</i> , 2016 , 97, 124-32	4.6	15

(2012-2015)

85	Removal of secondary compounds increases invertebrate abundance in lichens. <i>Fungal Ecology</i> , 2015 , 18, 18-25	4.1	15
84	Response of photosynthetic carbon gain to ecosystem retrogression of vascular plants and mosses in the boreal forest. <i>Oecologia</i> , 2012 , 169, 661-72	2.9	15
83	Above-ground and below-ground responses to long-term nutrient addition across a retrogressive chronosequence. <i>Journal of Ecology</i> , 2016 , 104, 545-560	6	15
82	Invasive rodents have multiple indirect effects on seabird island invertebrate food web structure 2017 , 27, 1190-1198		14
81	Toward more robust plant-soil feedback research: Comment. <i>Ecology</i> , 2019 , 100, e02590	4.6	14
80	Coordination of aboveground and belowground responses to local-scale soil fertility differences between two contrasting Jamaican rain forest types. <i>Oikos</i> , 2015 , 124, 285-297	4	14
79	Rat invasion of islands alters fungal community structure, but not wood decomposition rates. <i>Oikos</i> , 2013 , 122, 258-264	4	14
78	Changes in local-scale intraspecific trait variability of dominant species across contrasting island ecosystems. <i>Ecosphere</i> , 2014 , 5, art26	3.1	14
77	Biodiversity, ecosystems and interactions that transcend the interface. <i>Trends in Ecology and Evolution</i> , 1999 , 14, 125-127	10.9	14
76	Statistical analyses of soil quality. <i>Science</i> , 1994 , 264, 281-2	22.2	T 1
	Statistical analyses of soil quality. Science, 1994, 204, 201-2	33.3	14
75	INTRODUCED BROWSING MAMMALS IN NEW ZEALAND NATURAL FORESTS: ABOVEGROUND AND BELOWGROUND CONSEQUENCES 2001 , 71, 587	33.3	14
	INTRODUCED BROWSING MAMMALS IN NEW ZEALAND NATURAL FORESTS: ABOVEGROUND AND	1.4	
75	INTRODUCED BROWSING MAMMALS IN NEW ZEALAND NATURAL FORESTS: ABOVEGROUND AND BELOWGROUND CONSEQUENCES 2001 , 71, 587 Landscape perception: linking physical monitoring data to perceived landscape properties.		14
75 74	INTRODUCED BROWSING MAMMALS IN NEW ZEALAND NATURAL FORESTS: ABOVEGROUND AND BELOWGROUND CONSEQUENCES 2001 , 71, 587 Landscape perception: linking physical monitoring data to perceived landscape properties. Landscape Research, 2020 , 45, 179-192 Biotic resistance in freshwater fish communities: species richness, saturation or species identity?.	1.4	14
75 74 73	INTRODUCED BROWSING MAMMALS IN NEW ZEALAND NATURAL FORESTS: ABOVEGROUND AND BELOWGROUND CONSEQUENCES 2001 , 71, 587 Landscape perception: linking physical monitoring data to perceived landscape properties. Landscape Research, 2020 , 45, 179-192 Biotic resistance in freshwater fish communities: species richness, saturation or species identity?. Oikos, 2015 , 124, 1058-1064 Drivers of inter-year variability of plant production and decomposers across contrasting island	1.4	14 14 13
75 74 73	INTRODUCED BROWSING MAMMALS IN NEW ZEALAND NATURAL FORESTS: ABOVEGROUND AND BELOWGROUND CONSEQUENCES 2001, 71, 587 Landscape perception: linking physical monitoring data to perceived landscape properties. Landscape Research, 2020, 45, 179-192 Biotic resistance in freshwater fish communities: species richness, saturation or species identity?. Oikos, 2015, 124, 1058-1064 Drivers of inter-year variability of plant production and decomposers across contrasting island ecosystems. Ecology, 2012, 93, 521-31 Variation in protein complexation capacity among and within six plant species across a boreal	1.4 4 4.6	14 14 13
75 74 73 72 71	INTRODUCED BROWSING MAMMALS IN NEW ZEALAND NATURAL FORESTS: ABOVEGROUND AND BELOWGROUND CONSEQUENCES 2001, 71, 587 Landscape perception: linking physical monitoring data to perceived landscape properties. Landscape Research, 2020, 45, 179-192 Biotic resistance in freshwater fish communities: species richness, saturation or species identity?. Oikos, 2015, 124, 1058-1064 Drivers of inter-year variability of plant production and decomposers across contrasting island ecosystems. Ecology, 2012, 93, 521-31 Variation in protein complexation capacity among and within six plant species across a boreal forest chronosequence. Plant Ecology, 2010, 211, 253-266 Weighted species richness outperforms species richness as predictor of biotic resistance. Ecology,	1.4 4 4.6 1.7	14 14 13 13

67	PLANT REMOVALS IN PERENNIAL GRASSLAND: VEGETATION DYNAMICS, DECOMPOSERS, SOIL BIODIVERSITY, AND ECOSYSTEM PROPERTIES 1999 , 69, 535		12
66	Local plant adaptation across a subarctic elevational gradient. <i>Royal Society Open Science</i> , 2014 , 1, 140 ²	14313	11
65	Analysis of co-occurrence in a fungal community. <i>Mycological Research</i> , 1991 , 95, 504-507		11
64	Lichen specific thallus mass and secondary compounds change across a retrogressive fire-driven chronosequence. <i>PLoS ONE</i> , 2012 , 7, e49081	3.7	11
63	Crown-fire severity is more important than ground-fire severity in determining soil fungal community development in the boreal forest. <i>Journal of Ecology</i> , 2021 , 109, 504-518	6	11
62	Soil Methane Sink Capacity Response to a Long-Term Wildfire Chronosequence in Northern Sweden. <i>PLoS ONE</i> , 2015 , 10, e0129892	3.7	10
61	Indirect Effects of Invertebrate Herbivory on the Decomposer Subsystem. Ecological Studies, 2008, 53-6	59 1.1	10
60	Above and belowground community strategies respond to different global change drivers. <i>Scientific Reports</i> , 2019 , 9, 2540	4.9	10
59	Boreal Forests Sequester Large Amounts of Mercury over Millennial Time Scales in the Absence of Wildfire. <i>Environmental Science & Environmental Scien</i>	10.3	9
58	A framework for understanding human-driven vegetation change. <i>Oikos</i> , 2017 , 126, 1687-1698	4	9
57	Degradation of Southeast Asian tropical peatlands and integrated strategies for their better management and restoration. <i>Journal of Applied Ecology</i> , 2021 , 58, 1370	5.8	9
56	Root trait-microbial relationships across tundra plant species. <i>New Phytologist</i> , 2021 , 229, 1508-1520	9.8	9
55	Contrasting changes in palatability following senescence of the lichenized fungi Lobaria pulmonaria and L. scrobiculata. <i>Fungal Ecology</i> , 2012 , 5, 710-713	4.1	8
54	Determination of bacterial and fungal fumigation 🛭 factors across a soil moisture gradient. <i>Soil Biology and Biochemistry</i> , 1990 , 22, 811-816	7.5	8
53	The role of bryophytes for tree seedling responses to winter climate change: Implications for the stress gradient hypothesis. <i>Journal of Ecology</i> , 2018 , 106, 1142-1155	6	8
52	Disentangling Effects of Time Since Fire, Overstory Composition and Organic Layer Thickness on Nutrient Availability in Canadian Boreal Forest. <i>Ecosystems</i> , 2019 , 22, 33-48	3.9	7
51	The influence of tree-scale and ecosystem-scale factors on epiphytic lichen communities across a long-term retrogressive chronosequence. <i>Journal of Vegetation Science</i> , 2014 , 25, 1100-1111	3.1	7
50	The effect of simulated herbivory on growth and nutrient status of focal and neighbouring early successional woody plant species. <i>Oikos.</i> 2011 . 120. 1380-1392	4	7

49	Relative intra-species competitive ability of nodding thistle biotypes with varying resistance to the herbicide 2,4-D. <i>New Zealand Journal of Agricultural Research</i> , 1998 , 41, 291-297	1.9	7
48	Allelopathy in the New Zealand grassland/pasture ecosystem. <i>New Zealand Journal of Crop and Horticultural Science</i> , 1987 , 15, 243-255		7
47	Aboveground-Belowground Linkages, Ecosystem Development, and Ecosystem Restoration 2007, 45-6	8	7
46	Seabirds as agents of spatial heterogeneity on New Zealand® offshore islands. <i>Plant and Soil</i> , 2014 , 383, 139-153	4.2	6
45	Snow fungi as a food source for micro-arthropods. European Journal of Soil Biology, 2014, 60, 77-80	2.9	6
44	Do 'Faculty of 1000' (F1000) ratings of ecological publications serve as reasonable predictors of their future impact?. <i>Ideas in Ecology and Evolution</i> , 2010 ,	1	6
43	Shifts in Aboveground Biomass Allocation Patterns of Dominant Shrub Species across a Strong Environmental Gradient. <i>PLoS ONE</i> , 2016 , 11, e0157136	3.7	6
42	Changes in functional traits of the terricolous lichen Peltigera aphthosa across a retrogressive boreal forest chronosequence. <i>Lichenologist</i> , 2015 , 47, 187-195	1.1	5
41	Influence of species identity and charring conditions on fire-derived charcoal traits. <i>Canadian Journal of Forest Research</i> , 2015 , 45, 1669-1675	1.9	5
40	Holocene land uplift and its influence on fire history and ecosystem development in boreal Sweden. <i>Journal of Vegetation Science</i> , 2004 , 15, 171-180	3.1	5
39	Free lunch?. <i>Nature</i> , 1991 , 352, 482-482	50.4	5
38	Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest 2005 , 3, 421		5
37	Home-field advantage of litter decomposition: from the phyllosphere to the soil. <i>New Phytologist</i> , 2021 , 231, 1353-1358	9.8	5
36	Soil fertility effects on tree seedling performance are light-dependent: evidence from a long-term soil chronosequence. <i>Oikos</i> , 2016 , 125, 1121-1133	4	5
35	Contrasting responses of springtails and mites to elevation and vegetation type in the sub-Arctic. <i>Pedobiologia</i> , 2018 , 67, 57-64	1.7	4
34	Seedling responses to changes in canopy and soil properties during stand development following clear-cutting. <i>Forest Ecology and Management</i> , 2016 , 378, 31-43	3.9	4
33	The interactive effects of surface-burn severity and canopy cover on conifer and broadleaf tree seedling ecophysiology. <i>Canadian Journal of Forest Research</i> , 2014 , 44, 1032-1041	1.9	4
32	Global distribution of earthworm diversity		4

31	Mosses modify effects of warmer and wetter conditions on tree seedlings at the alpine treeline. <i>Global Change Biology</i> , 2020 , 26, 5754-5766	11.4	4
30	Effects of plant functional group removal on CO fluxes and belowground C stocks across contrasting ecosystems. <i>Ecology</i> , 2020 , 101, e03170	4.6	4
29	Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. <i>Scientific Data</i> , 2021 , 8, 136	8.2	4
28	Divergent responses of ⊞iversity among organism groups to a strong environmental gradient. <i>Ecosphere</i> , 2016 , 7, e01535	3.1	4
27	Hidden Effects: the Belowground Consequences of Introduced Browsing Mammals in New Zealand Forests 2006 , 307-322		4
26	Invasion Science: Looking Forward Rather Than Revisiting Old Ground - A Reply to Zenni et al. <i>Trends in Ecology and Evolution</i> , 2017 , 32, 809-810	10.9	3
25	On plummeting manuscript acceptance rates by the main ecological journals and the progress of ecology. <i>Ideas in Ecology and Evolution</i> , 2012 ,	1	3
24	Biochar increases tree biomass in a managed boreal forest, but does not alter N2O, CH4, and CO2 emissions. <i>GCB Bioenergy</i> , 2021 , 13, 1329-1342	5.6	3
23	Soil biotic and abiotic effects on seedling growth exhibit context-dependent interactions: evidence from a multi-country experiment on Pinus contorta invasion. <i>New Phytologist</i> , 2021 , 232, 303-317	9.8	3
22	Impact of plant functional group and species removals on soil and plant nitrogen and phosphorus across a retrogressive chronosequence. <i>Journal of Ecology</i> , 2020 , 108, 561-573	6	3
21	Responses of tundra plant community carbon flux to experimental warming, dominant species removal and elevation. <i>Functional Ecology</i> , 2020 , 34, 1497-1506	5.6	3
20	Contrasting responses of plant and lichen carbon-based secondary compounds across an elevational gradient. <i>Functional Ecology</i> , 2021 , 35, 330-341	5.6	3
19	Holocene land uplift and its influence on fire history and ecosystem development in boreal Sweden 2004 , 15, 171		2
18	Interactions between establishing nodding thistle and pasture seedlings. <i>New Zealand Plant Protection</i> ,43, 225-228	1	2
17	Aboveground and Belowground Consequences of Long-Term Forest Retrogression in the Timeframe of Millennia and Beyond. <i>Ecological Studies</i> , 2009 , 193-209	1.1	2
16	Changes in stable nitrogen isotopes of plants, bulk soil and soil dissolved N during ecosystem retrogression in boreal forest. <i>Ecological Research</i> , 2021 , 36, 420-429	1.9	2
15	Decomposability of lichens and bryophytes from across an elevational gradient under standardized conditions. <i>Oikos</i> , 2020 , 129, 1358-1368	4	1
14	Conservation: listen to more voices. <i>Nature</i> , 2014 , 516, 37	50.4	1

LIST OF PUBLICATIONS

13	Ecology by numbers. <i>Trends in Ecology and Evolution</i> , 2002 , 17, 533-534	10.9	1
12	The benefits of being stressed. <i>Trends in Ecology and Evolution</i> , 2001 , 16, 604	10.9	1
11	Suppression of Ozone Formation at High Temperature in China: From Historical Observations to Future Projections. <i>Geophysical Research Letters</i> ,	4.9	1
10	Precipitation regime controls bryosphere carbon cycling similarly across contrasting ecosystems. <i>Oikos</i> , 2021 , 130, 512-524	4	1
9	Effects of Soil Abiotic and Biotic Factors on Tree Seedling Regeneration Following a Boreal Forest Wildfire. <i>Ecosystems</i> ,1	3.9	1
8	Relevance of Interactions amongst Soil Microorganisms to Soil Biological Fertility 2007 , 187-201		1
7	Plant-microbial linkages underpin carbon sequestration in contrasting mountain tundra vegetation types. <i>Soil Biology and Biochemistry</i> , 2022 , 165, 108530	7.5	O
6	Climate and multiple dimensions of plant diversity regulate ecosystem carbon exchange along an elevational gradient. <i>Ecosphere</i> , 2021 , 12, e03472	3.1	O
5	Urbanization minimizes the effects of plant traits on soil provisioned ecosystem services across climatic regions. <i>Global Change Biology</i> , 2021 , 27, 4139-4153	11.4	O
4	Soil phosphorus forms show only minor changes across a 5000-year-old boreal wildfire chronosequence. <i>Biogeochemistry</i> ,1	3.8	O
3	Bryosphere Loss Impairs Litter Decomposition Consistently Across Moss Species, Litter Types, and Micro-Arthropod Abundance. <i>Ecosystems</i> ,1	3.9	O
2	Resolution of respect for Gregor William Yeates, 19442012. <i>Pedobiologia</i> , 2012 , 55, 283-284	1.7	
1	Ecosystem Rates of Transformation MatterResponse. <i>Science</i> , 2011 , 333, 937-937	33.3	