Datong Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2622614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyaniline functionalized reduced graphene oxide/carbon nanotube ternary nanocomposite as a supercapacitor electrode. Chemical Communications, 2020, 56, 4003-4006.	4.1	68
2	Covalent functionalization of reduced graphene oxide aerogels with polyaniline for high performance supercapacitors. Chemical Communications, 2019, 55, 1738-1741.	4.1	62
3	A facile avenue to prepare chiral graphene sheets as electrode modification for electrochemical enantiorecognition. Analytica Chimica Acta, 2018, 1033, 58-64.	5.4	53
4	Covalent Functionalization of Bovine Serum Albumin with Graphene Quantum Dots for Stereospecific Molecular Recognition. Analytical Chemistry, 2019, 91, 11864-11871.	6.5	53
5	Single-Template Molecularly Imprinted Chiral Sensor for Simultaneous Recognition of Alanine and Tyrosine Enantiomers. Analytical Chemistry, 2019, 91, 12546-12552.	6.5	51
6	Recent progress of taskâ€specific ionic liquids in chiral resolution and extraction of biological samples and metal ions. Journal of Separation Science, 2018, 41, 373-384.	2.5	49
7	Structural characterization and immunomodulatory activity of a water soluble polysaccharide isolated from Botrychium ternatum. Carbohydrate Polymers, 2017, 171, 136-142.	10.2	48
8	Specific cooperative effect for the enantiomeric separation of amino acids using aqueous two-phase systems with task-specific ionic liquids. Journal of Chromatography A, 2015, 1395, 65-72.	3.7	46
9	Electrochemical Chiral Recognition of Tryptophan Isomers Based on Nonionic Surfactant-Assisted Molecular Imprinting Sol–Gel Silica. ACS Applied Materials & Interfaces, 2019, 11, 2840-2848.	8.0	46
10	Chiral Poly(ionic liquid) with Nonconjugated Backbone as a Fluorescent Enantioselective Sensor for Phenylalaninol and Tryptophan. ACS Applied Materials & Interfaces, 2018, 10, 23362-23368.	8.0	42
11	Fabrication of CuO nanoparticles-decorated 3D N-doped porous carbon as electrochemical sensing platform for the detection of Sudan I. Food Chemistry, 2019, 287, 375-381.	8.2	40
12	Coinduction of a Chiral Microenvironment in Polypyrrole by Overoxidation and Camphorsulfonic Acid for Electrochemical Chirality Sensing. Analytical Chemistry, 2018, 90, 9551-9558.	6.5	39
13	Dynamic Interaction between Host and Guest for Enantioselective Recognition: Application of β-Cyclodextrin-Based Charged Catenane As Electrochemical Probe. Analytical Chemistry, 2019, 91, 5961-5967.	6.5	37
14	Recent progress of enantioseparation under scale production (2014–2019). Journal of Separation Science, 2020, 43, 337-347.	2.5	34
15	Synthesis of oxidized pullulan coated mesoporous silica for pH-sensitive drug delivery. European Polymer Journal, 2020, 122, 109399.	5.4	34
16	Nanowired NiMoO ₄ /NiSe ₂ /MoSe ₂ prepared through <i>in situ</i> selenylation as a high performance supercapacitor electrode. Chemical Communications, 2021, 57, 4019-4022.	4.1	33
17	Enhancement of visual chiral sensing via an anion-binding approach: Novel ionic liquids as the chiral selectors. Analytica Chimica Acta, 2017, 962, 97-103.	5.4	32
18	Chiral Sensing Platform Based on the Self-Assemblies of Diphenylalanine and Oxalic Acid. Analytical Chemistry, 2018, 90, 5451-5458.	6.5	32

DATONG WU

#	Article	IF	CITATIONS
19	Enantioselective Recognition of Chiral Tryptophan with Achiral Glycine through the Strategy of Chirality Transfer. Analytical Chemistry, 2020, 92, 11927-11934.	6.5	31
20	Smart Chiral Sensing Platform with Alterable Enantioselectivity. Analytical Chemistry, 2017, 89, 12930-12937.	6.5	30
21	Enantioselective Precipitate of Amines, Amino Alcohols, and Amino Acids via Schiff Base Reaction in the Presence of Chiral Ionic Liquid. Organic Letters, 2017, 19, 5018-5021.	4.6	29
22	Special Effect of Ionic Liquids on the Extraction of Flavonoid Glycosides from Chrysanthemum morifolium Ramat by Microwave Assistance. Molecules, 2015, 20, 7683-7699.	3.8	27
23	Highly enantioselective recognition of various acids using polymerized chiral ionic liquid as electrode modifies. Sensors and Actuators B: Chemical, 2019, 282, 164-170.	7.8	26
24	The hybrids of perylene tetracarboxylic acid functionalized multi-walled carbon nanotubes and chitosan for electrochemical chiral sensing of tryptophan enantiomers. Bioelectrochemistry, 2022, 146, 108110.	4.6	25
25	High-Speed Counter-Current Chromatography (HSCCC) Purification of Antifungal Hydroxy Unsaturated Fatty Acids from Plant-Seed Oil and <i>Lactobacillus</i> Cultures. Journal of Agricultural and Food Chemistry, 2017, 65, 11229-11236.	5.2	24
26	Dual stimuli-responsive nanoplatform based on core-shell structured graphene oxide/mesoporous silica@alginate. International Journal of Biological Macromolecules, 2021, 175, 209-216.	7.5	24
27	Fluorescence recognition of chiral amino alcohols by using a novel ionic liquid sensor. Analyst, The, 2017, 142, 2961-2966.	3.5	23
28	Chiral Enantioselective Assemblies Induced from Achiral Porphyrin by l- and d-Lysine. Langmuir, 2019, 35, 16761-16769.	3.5	22
29	Decoration of glutathione with copper-platinum nanoparticles for chirality sensing of tyrosine enantiomers. Electrochemistry Communications, 2020, 110, 106638.	4.7	22
30	Novel ionic liquid matrices for qualitative and quantitative detection of carbohydrates by matrix assisted laser desorption/ionization mass spectrometry. Analytica Chimica Acta, 2017, 985, 114-120.	5.4	21
31	Enantioselective Limiting Transport into a Fixed Cavity via Supramolecular Interaction for the Chiral Electroanalysis of Amino Acids Regardless of Electroactive Units. Analytical Chemistry, 2020, 92, 13711-13717.	6.5	20
32	Silver nanoparticle driven signal amplification for electrochemical chiral discrimination of amino acids. Analyst, The, 2021, 146, 1612-1619.	3.5	20
33	A redox and pH dual-triggered drug delivery platform based on chitosan grafted tubular mesoporous silica. Ceramics International, 2019, 45, 22603-22609.	4.8	19
34	A facile route to prepare functional mesoporous organosilica spheres with electroactive units for chiral recognition of amino acids. Analyst, The, 2019, 144, 543-549.	3.5	19
35	Rational design of a multi-responsive drug delivery platform based on SiO2@PPy@poly(acrylic) Tj ETQq1 1 0.78	84314.rgB1 4.1	/Oyerlock I(
36	Competitive Self-Assembly Interaction between Ferrocenyl Units and Amino Acids for Entry into the Cavity of β-Cyclodextrin for Chiral Electroanalysis. Analytical Chemistry, 2022, 94, 6050-6056.	6.5	18

DATONG WU

#	Article	IF	CITATIONS
37	An ionic-based carbon dot for enantioselective discrimination of nonaromatic amino alcohols. Analyst, The, 2020, 145, 3395-3400.	3.5	17
38	Ultrasensitive Electrochemical Impedance Chiral Discrimination and Sensing of Tryptophan Isomers Based on Core–Shell-Structured Au–Ag Nanoparticles. Langmuir, 2021, 37, 14454-14462.	3.5	16
39	Hollow NiCoSe2/C prepared through a step-by-step derivatization method for high performance supercapacitors. Journal of Electroanalytical Chemistry, 2022, 905, 115976.	3.8	16
40	TiO ₂ Nanotubes Decorated with CdSe Quantum Dots: A Bifunctional Electrochemiluminescent Platform for Chiral Discrimination and Chiral Sensing. Analytical Chemistry, 2022, 94, 9399-9406.	6.5	15
41	Specific ionic effect for simple and rapid colorimetric sensing assays of amino acids using gold nanoparticles modified with task-specific ionic liquid. Analytica Chimica Acta, 2016, 902, 174-181.	5.4	13
42	Recent advances of the ionic chiral selectors for chiral resolution by chromatography, spectroscopy and electrochemistry. Journal of Separation Science, 2022, 45, 325-337.	2.5	13
43	Strategies to Achieve a Ferrocene-Based Polymer with Reversible Redox Activity for Chiral Electroanalysis of Nonelectroactive Amino Acids. Analytical Chemistry, 2021, 93, 10160-10166.	6.5	13
44	Gold Nanorods@Mesoporous SiO ₂ @Hyaluronic Acid Core–Shell Nanoparticles for Controlled Drug Delivery. ACS Applied Nano Materials, 2022, 5, 7440-7448.	5.0	13
45	A chiral helical self-assembly for electrochemical recognition of tryptophan enantiomers. Electrochemistry Communications, 2019, 104, 106478.	4.7	12
46	Multi-templates based molecularly imprinted sodium alginate/MnO2 for simultaneous enantiorecognition of lysine, alanine and cysteine isomers. International Journal of Biological Macromolecules, 2019, 129, 786-791.	7.5	12
47	Smart construction of an efficient enantioselective sensing device based on bioactive tripeptide. Analytical Methods, 2019, 11, 1951-1957.	2.7	10
48	Efficient enantiorecognition of amino acids under a stimuli-responsive system: synthesis, characterization and application of electroactive rotaxane. Analyst, The, 2019, 144, 6415-6421.	3.5	9
49	Electrochemiluminescent chiral discrimination with chiral Ag ₂ S quantum dots/few-layer carbon nitride nanosheets. Analyst, The, 2021, 146, 6245-6251.	3.5	8
50	Fluorometric discrimination of tyrosine isomers based on the inner filter effect of chiral Au nanoparticles on MoS ₂ quantum dots. Analytical Methods, 2021, 13, 2290-2296.	2.7	7
51	Improved chiral electrochemical recognition of tryptophan enantiomers based on threeâ€dimensional molecularly imprinted overoxidized polypyrrole/MnO 2 /carbon felt composites. Chirality, 2019, 31, 917-922.	2.6	6
52	A Real-Time Strategy for Chiroptical Sensing and Enantiomeric Excess Determination of Primary Amines via an Acid–Base Reaction. Organic Letters, 2022, 24, 5226-5229.	4.6	6
53	Enantioselective recognition of tryptophan isomers with molecularly imprinted overoxidized polypyrrole/poly(<i>p</i> â€aminobenzene sulfonic acid) modified electrode. Chirality, 2021, 33, 176-183.	2.6	5
54	Chiral supramolecular hydrogel with controllable phase transition behavior for stereospecific molecular recognition. Journal of Electroanalytical Chemistry, 2021, 883, 115045.	3.8	4

#	Article	IF	CITATIONS
55	Strategies to synthesize a chiral helical polymer accompanying with two stereogenic centers for chiral electroanalysis. Analytica Chimica Acta, 2022, 1206, 339810.	5.4	2
56	A facile synthesis of two ionized fluorescent carbon dots and selective detection toward Fe ²⁺ and Cu ²⁺ . Nanoscale Advances, 2020, 2, 2943-2949.	4.6	1