Ana Estanqueiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2622423/publications.pdf

Version: 2024-02-01

331259 301761 1,870 49 21 39 h-index citations g-index papers 53 53 53 1936 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Wind and solar energy curtailment: A review of international experience. Renewable and Sustainable Energy Reviews, 2016, 65, 577-586.	8.2	375
2	Impacts of large amounts of wind power on design and operation of power systems, results of IEA collaboration. Wind Energy, 2011, 14, 179-192.	1.9	342
3	Integrated sizing and scheduling of wind/PV/diesel/battery isolatedÂsystems. Renewable Energy, 2015, 83, 646-657.	4.3	178
4	A new methodology for urban wind resource assessment. Renewable Energy, 2016, 89, 598-605.	4.3	68
5	The Levelized Cost of Energy (LCOE) of wave energy using GIS based analysis: The case study of Portugal. International Journal of Electrical Power and Energy Systems, 2015, 65, 21-25.	3.3	53
6	Addressing technical challenges in 100% variable inverterâ€based renewable energy power systems. Wiley Interdisciplinary Reviews: Energy and Environment, 2020, 9, e376.	1.9	47
7	Experience and Challenges With Short-Term Balancing in European Systems With Large Share of Wind Power. IEEE Transactions on Sustainable Energy, 2012, 3, 853-861.	5.9	46
8	How to prepare a power system for 15% wind energy penetration: the Portuguese case study. Wind Energy, 2008, $11,75$ -84.	1.9	45
9	System Impact Studies for Near 100% Renewable Energy Systems Dominated by Inverter Based Variable Generation. IEEE Transactions on Power Systems, 2022, 37, 3249-3258.	4.6	43
10	Model Predictive Control for Microgrid Functionalities: Review and Future Challenges. Energies, 2021, 14, 1296.	1.6	42
11	A Dynamic Wind Generation Model for Power Systems Studies. IEEE Transactions on Power Systems, 2007, 22, 920-928.	4.6	41
12	Impact of Weather Regimes on the Wind Power Ramp Forecast in Portugal. IEEE Transactions on Sustainable Energy, 2015, 6, 934-942.	5.9	41
13	Variability in largeâ€scale wind power generation. Wind Energy, 2016, 19, 1649-1665.	1.9	41
14	Design of a new urban wind turbine airfoil using a pressure-load inverse method. Renewable Energy, 2009, 34, 2728-2734.	4.3	40
15	Hydro power flexibility for power systems with variable renewable energy sources: an IEA Task 25 collaboration. Wiley Interdisciplinary Reviews: Energy and Environment, 2017, 6, e220.	1.9	40
16	Planning of the installation of offshore renewable energies: A GIS approach of the Portuguese roadmap. Renewable Energy, 2019, 132, 1251-1262.	4.3	37
17	Currents of change. IEEE Power and Energy Magazine, 2011, 9, 47-59.	1.6	33
18	Assessment of wind and solar PV local complementarity for the hybridization of the wind power plants installed in Portugal. Journal of Cleaner Production, 2021, 319, 128728.	4.6	31

#	Article	IF	Citations
19	Exploring Wind and Solar PV Generation Complementarity to Meet Electricity Demand. Energies, 2020, 13, 4132.	1.6	29
20	Barriers (and Solutions) to Very High Wind Penetration in Power Systems. IEEE Power Engineering Society General Meeting, 2007, , .	0.0	26
21	Participation of wind power producers in dayâ€ahead and balancing markets: An overview and a simulationâ€based study. Wiley Interdisciplinary Reviews: Energy and Environment, 2019, 8, e343.	1.9	23
22	C-E (curtailment – Energy share) map: An objective and quantitative measure to evaluate wind and solar curtailment. Renewable and Sustainable Energy Reviews, 2022, 160, 112212.	8.2	22
23	Effects of regulating the European Internal Market on the integration of variable renewable energy. Wiley Interdisciplinary Reviews: Energy and Environment, 2019, 8, e346.	1.9	20
24	A cyclic time-dependent Markov process to model daily patterns in wind turbine power production. Energy, 2014, 67, 557-568.	4.5	19
25	Optimal Planning of Isolated Power Systems with near 100% of Renewable Energy. IEEE Transactions on Power Systems, 2020, 35, 1274-1283.	4.6	17
26	Transmission planning for wind energy in the United States and Europe: status and prospects. Wiley Interdisciplinary Reviews: Energy and Environment, 2013, 2, 1-13.	1.9	15
27	On the use of Markov chain models for the analysis of wind power time-series. , 2012, , .		14
28	A simulation of integrated photovoltaic conversion into electric grid. Solar Energy, 2014, 110, 578-594.	2.9	12
29	Variable Renewable Energy and Market Design: New Products and a Real-World Study. Energies, 2019, 12, 4576.	1.6	11
30	Impact of Weather Conditions on the Windows of Opportunity for Operation of Offshore Wind Farms in Portugal. Wind Engineering, 2013, 37, 257-268.	1.1	10
31	PV systems linked to the grid: Parameter identification with a heuristic procedure. Sustainable Energy Technologies and Assessments, 2015, 10, 29-39.	1.7	10
32	Agent-Based Simulation of Day-Ahead Energy Markets: Impact of Forecast Uncertainty and Market Closing Time on Energy Prices. , $2016, \dots$		9
33	From Wind to Hybrid: A Contribution to the Optimal Design of Utility-Scale Hybrid Power Plants. Energies, 2022, 15, 2560.	1.6	8
34	A methodology for the identification of the sustainable wind potential. The Portuguese case study , 2009, , .		7
35	A method to correct the flow distortion of offshore wind data using CFD simulation and experimental wind tunnel tests. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 140, 87-94.	1.7	7
36	Changing the Day-Ahead Gate Closure to Wind Power Integration: A Simulation-Based Study. Energies, 2019, 12, 2765.	1.6	7

#	Article	IF	Citations
37	Assessment of Power Quality Characteristics of Wind Farms. IEEE Power Engineering Society General Meeting, 2007, , .	0.0	6
38	Wind Power Ramps Driven by Windstorms and Cyclones. Energies, 2017, 10, 1475.	1.6	6
39	Wind power producers in shorter gate closure markets and balancing markets. , 2016, , .		5
40	Wind power participation in electricity markets â€" The role of wind power forecasts. , 2016, , .		4
41	Weather dependent estimation of continent-wide wind power generation based on spatio-temporal clustering. Advances in Science and Research, 0, 14, 131-138.	1.0	4
42	Integration of renewable sources in the electric system using Virtual Renewable Power Plants. , 2011, , .		3
43	Energy storage for wind integration: Hydropower and other contributions. , 2012, , .		3
44	Simulation of a-Si PV system linked to the grid by DC-DC boost and two-level converter. , 2014, , .		3
45	Multi-agent Wholesale Electricity Markets with High Penetrations of Variable Generation: A Case-Study on Multivariate Forecast Bidding Strategies. Communications in Computer and Information Science, 2017, , 340-349.	0.4	2
46	Validation of an Offshore Wind Atlas Using the Satellite Data Available at the Coastal Regions of Portugal. Wind Engineering, 2013, 37, 321-331.	1.1	1
47	New electricity markets. The challenges of variable renewable energy. , 2021, , 3-20.		1
48	Wind Resource Assessment Method for Floating Deep Offshore Wind Turbines. Engineering $\&$ Technology Reference, 2014, , .	0.1	1
49	A Spatiotemporal Methodology for Deep Offshore Resource Assessment. Green Energy and Technology, 2016, , 143-160.	0.4	O