Anu Ramaswami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2622416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploring the Nonlinear Relationship between the Built Environment and Active Travel in the Twin Cities. Journal of Planning Education and Research, 2023, 43, 637-652.	2.7	47
2	A data framework for assessing social inequality and equity in multiâ€sector social, ecological, infrastructural urban systems: Focus on fineâ€spatial scales. Journal of Industrial Ecology, 2022, 26, 145-163.	5.5	10
3	County-level analysis of current local capacity of agriculture to meet household demand: a dietary requirements perspective. Environmental Research Letters, 2022, 17, 044070.	5.2	2
4	Data innovation in industrial ecology. Journal of Industrial Ecology, 2022, 26, 6-11.	5.5	2
5	Human wellâ€being and per capita energy use. Ecosphere, 2022, 13, .	2.2	13
6	Urban environments and trans-boundary linkages. , 2022, , 337-374.		0
7	Impact of Circular, Waste-Heat Reuse Pathways on PM _{2.5} -Air Quality, CO ₂ Emissions, and Human Health in India: Comparison with Material Exchange Potential. Environmental Science & Technology, 2022, 56, 9773-9783.	10.0	3
8	Connecting the dots between urban infrastructure, well-being, livability, and equity: a data-driven approach. Environmental Research: Infrastructure and Sustainability, 2022, 2, 035004.	2.3	3
9	Orthogonalization and machine learning methods for residential energy estimation with social and economic indicators. Applied Energy, 2021, 283, 116114.	10.1	5
10	All urban areas' energy use data across 640 districts in IndiaÂfor the year 2011. Scientific Data, 2021, 8, 104.	5.3	13
11	Carbon analytics for net-zero emissions sustainable cities. Nature Sustainability, 2021, 4, 460-463.	23.7	50
12	U.S.–China Collaboration is Vital to Global Plans for a Healthy Environment and Sustainable Development. Environmental Science & Technology, 2021, 55, 9622-9626.	10.0	10
13	Measuring social equity in urban energy use and interventions using fine-scale data. Proceedings of the United States of America, 2021, 118, .	7.1	34
14	From Low- to Net-Zero Carbon Cities: The Next Global Agenda. Annual Review of Environment and Resources, 2021, 46, 377-415.	13.4	73
15	Reshaping urban infrastructure for a carbon-neutral and sustainable future. Resources, Conservation and Recycling, 2021, 174, 105765.	10.8	6
16	Impact of Urban Expansion and In Situ Greenery on Community-Wide Carbon Emissions: Method Development and Insights from 11 US Cities. Environmental Science & Technology, 2020, 54, 16086-16096.	10.0	16
17	Understanding subjective well-being: perspectives from psychology and public health. Public Health Reviews, 2020, 41, 25.	3.2	76
18	Transboundary Environmental Footprints of the Urban Food Supply Chain and Mitigation Strategies. Environmental Science & Technology, 2020, 54, 10460-10471.	10.0	28

ANU RAMASWAMI

#	Article	IF	CITATIONS
19	Considering the role of urban types in coproduced policy guidance for sustainability transitions. Urban Transformations, 2020, 2, .	2.4	2
20	Connecting Air Quality with Emotional Well-Being and Neighborhood Infrastructure in a US City. Environmental Health Insights, 2020, 14, 117863022091548.	1.7	12
21	Assessment of the Near-Road (monitoring) Network including comparison with nearby monitors within U.S. cities. Environmental Research Letters, 2020, 15, 114026.	5.2	13
22	Environmentally sustainable transitions of US district energy systems: Perspectives from infrastructure operators/designers through the co-evolutionary lens. Journal of Cleaner Production, 2020, 268, 121894.	9.3	4
23	Is gardening associated with greater happiness of urban residents? A multi-activity, dynamic assessment in the Twin-Cities region, USA. Landscape and Urban Planning, 2020, 198, 103776.	7.5	53
24	Unpacking the Urban Infrastructure Nexus with Environment, Health, Livability, Well-Being, and Equity. One Earth, 2020, 2, 120-124.	6.8	38
25	Impact of Locational Choices and Consumer Behaviors on Personal Land Footprints: An Exploration Across the Urban–Rural Continuum in the United States. Environmental Science & Technology, 2020, 54, 3091-3102.	10.0	9
26	Urban food–energy–water systems: past, current, and future research trajectories. Environmental Research Letters, 2020, 15, 050201.	5.2	12
27	Comparing urban food system characteristics and actions in US and Indian cities from a multiâ€environmental impact perspective: Toward a streamlined approach. Journal of Industrial Ecology, 2020, 24, 841-854.	5.5	12
28	Patterns of urban infrastructure capital investment in Chinese cities and explanation through a political market lens. Journal of Urban Affairs, 2019, 41, 248-263.	1.7	8
29	Diets, Food Miles, and Environmental Sustainability of Urban Food Systems: Analysis of Nine Indian Cities. Earth's Future, 2019, 7, 911-922.	6.3	14
30	Examining threshold effects of built environment elements on travel-related carbon-dioxide emissions. Transportation Research, Part D: Transport and Environment, 2019, 75, 1-12.	6.8	93
31	Industrial symbiosis potential and urban infrastructure capacity in Mysuru, India. Environmental Research Letters, 2019, 14, 075003.	5.2	21
32	Review on City-Level Carbon Accounting. Environmental Science & Technology, 2019, 53, 5545-5558.	10.0	75
33	Demographic Inequities in Health Outcomes and Air Pollution Exposure in the Atlanta Area and its Relationship to Urban Infrastructure. Journal of Urban Health, 2019, 96, 219-234.	3.6	33
34	Future energy scenarios with distributed technology options for residential city blocks in three climate regions of the United States. Applied Energy, 2019, 237, 60-69.	10.1	11
35	Monitoring particulate matter in India: recent trends and future outlook. Air Quality, Atmosphere and Health, 2019, 12, 45-58.	3.3	93
36	The collective contribution of Chinese cities to territorial and electricity-related CO2 emissions. Journal of Cleaner Production, 2018, 189, 910-921.	9.3	24

ANU RAMASWAMI

#	Article	IF	CITATIONS
37	Impact of the Economic Structure of Cities on Urban Scaling Factors: Implications for Urban Material and Energy Flows in China. Journal of Industrial Ecology, 2018, 22, 392-405.	5.5	34
38	Regional Governance and Institutional Collective Action for Environmental Sustainability. Public Administration Review, 2018, 78, 556-566.	4.1	81
39	Cities and "budgetâ€based―management of the energyâ€waterâ€climate nexus: Case studies in transportat policy, infrastructure systems, and urban utility risk management. Environmental Progress and Sustainable Energy, 2018, 37, 91-107.	ion 2.3	13
40	Resource requirements of inclusive urban development in India: insights from ten cities. Environmental Research Letters, 2018, 13, 025010.	5.2	13
41	Assessing Current Local Capacity for Agrifood Production To Meet Household Demand: Analyzing Select Food Commodities across 377 U.S. Metropolitan Areas. Environmental Science & Technology, 2018, 52, 10511-10521.	10.0	14
42	An urban systems framework to assess the trans-boundary food-energy-water nexus: implementation in Delhi, India. Environmental Research Letters, 2017, 12, 025008.	5.2	121
43	Wastewater treatment and reuse in urban agriculture: exploring the food, energy, water, and health nexus in Hyderabad, India. Environmental Research Letters, 2017, 12, 075005.	5.2	91
44	What Is the Contribution of City-Scale Actions to the Overall Food System's Environmental Impacts?: Assessing Water, Greenhouse Gas, and Land Impacts of Future Urban Food Scenarios. Environmental Science & Technology, 2017, 51, 12035-12045.	10.0	32
45	Urban cross-sector actions for carbon mitigation with local health co-benefits in China. Nature Climate Change, 2017, 7, 736-742.	18.8	102
46	Estimating the potential for industrial waste heat reutilization in urban district energy systems: method development and implementation in two Chinese provinces. Environmental Research Letters, 2017, 12, 125008.	5.2	6
47	Multi-Scale Governance of Sustainable Natural Resource Use—Challenges and Opportunities for Monitoring and Institutional Development at the National and Global Level. Sustainability, 2016, 8, 778.	3.2	73
48	What Is Remedial Secondary Infrastructure? Implications for Infrastructure Design, Policy for Sustainability, and Resilience. Journal of Infrastructure Systems, 2016, 22, 02516001.	1.8	3
49	Municipal solid waste and dung cake burning: discoloring the Taj Mahal and human health impacts in Agra. Environmental Research Letters, 2016, 11, 104009.	5.2	26
50	Meta-principles for developing smart, sustainable, and healthy cities. Science, 2016, 352, 940-943.	12.6	267
51	Exploring social and infrastructural factors affecting open burning of municipal solid waste (MSW) in Indian cities: A comparative case study of three neighborhoods of Delhi. Waste Management and Research, 2016, 34, 1164-1172.	3.9	17
52	A novel analysis of consumption-based carbon footprints in China: Unpacking the effects of urban settlement and rural-to-urban migration. Global Environmental Change, 2016, 39, 285-293.	7.8	50
53	Greenhouse gas emissions from key infrastructure sectors in larger and smaller Chinese cities: method development and benchmarking. Carbon Management, 2016, 7, 27-39.	2.4	15
54	Tracking urban carbon footprints from production and consumption perspectives. Environmental Research Letters, 2015, 10, 054001.	5.2	68

Anu Ramaswami

#	Article	IF	CITATIONS
55	Characterizing the Spatial and Temporal Patterns of Open Burning of Municipal Solid Waste (MSW) in Indian Cities. Environmental Science & Technology, 2015, 49, 12904-12912.	10.0	80
56	The Water Withdrawal Footprint of Energy Supply to Cities. Journal of Industrial Ecology, 2014, 18, 26-39.	5.5	30
57	Articulating a trans-boundary infrastructure supply chain greenhouse gas emission footprint for cities: Mathematical relationships and policy relevance. Energy Policy, 2013, 54, 376-384.	8.8	148
58	Exploring health outcomes as a motivator for low-carbon city development: Implications for infrastructure interventions in Asian cities. Habitat International, 2013, 37, 113-123.	5.8	20
59	Life Cycle Energy Use and Greenhouse Gas Emission Analysis for a Water Resource Recovery Facility in India. Water Environment Research, 2013, 85, 621-631.	2.7	5
60	What metrics best reflect the energy and carbon intensity of cities? Insights from theory and modeling of 20 US cities. Environmental Research Letters, 2013, 8, 035011.	5.2	108
61	Contribution of Water and Wastewater Infrastructures to Urban Energy Metabolism and Greenhouse Gas Emissions in Cities in India. Journal of Environmental Engineering, ASCE, 2013, 139, 738-745.	1.4	39
62	Optimization of Cementitious Material Content for Sustainable Concrete Mixtures. Journal of Materials in Civil Engineering, 2012, 24, 745-753.	2.9	46
63	Response to: Low-carbon cities, GHGs and â€~footprints'. Carbon Management, 2012, 3, 19-20.	2.4	3
64	Quantifying Carbon Mitigation Wedges in U.S. Cities: Near-Term Strategy Analysis and Critical Review. Environmental Science & Technology, 2012, 46, 3629-3642.	10.0	37
65	Implementing Transâ€Boundary Infrastructureâ€Based Greenhouse Gas Accounting for Delhi, India. Journal of Industrial Ecology, 2012, 16, 814-828.	5.5	98
66	Sustainable Urban Systems. Journal of Industrial Ecology, 2012, 16, 775-779.	5.5	40
67	Translating Research to Policy for Sustainable Cities. Journal of Industrial Ecology, 2012, 16, 786-788.	5.5	9
68	A Socialâ€Ecologicalâ€Infrastructural Systems Framework for Interdisciplinary Study of Sustainable City Systems. Journal of Industrial Ecology, 2012, 16, 801-813.	5.5	130
69	Carbon Footprinting of Cities and Implications for Analysis of Urban Material and Energy Flows. Journal of Industrial Ecology, 2012, 16, 783-785.	5.5	102
70	Greenhouse Gas Emissions from Global Cities. Environmental Science & Technology, 2011, 45, 3816-3817.	10.0	16
71	Two Approaches to Greenhouse Gas Emissions Foot-Printing at the City Scale. Environmental Science & Technology, 2011, 45, 4205-4206.	10.0	114
72	Waste-Incorporated Subbase for Porous Landscape Detention Basin Design. Journal of Environmental Engineering, ASCE, 2011, 137, 928-936.	1.4	4

Anu Ramaswami

#	Article	IF	CITATIONS
73	Planning for low-carbon communities in US cities: a participatory process model between academic institutions, local governments and communities in Colorado. Carbon Management, 2011, 2, 397-411.	2.4	15
74	Contextualizing carbon reduction initiatives: how should carbon mitigation be addressed by various cities worldwide?. Carbon Management, 2011, 2, 363-365.	2.4	9
75	Spatial Allocation of Transportation Greenhouse Gas Emissions at the City Scale. Journal of Transportation Engineering, 2011, 137, 416-425.	0.9	18
76	Low-carbon policies in the USA and China: why cities play a critical role. Carbon Management, 2011, 2, 359-362.	2.4	5
77	Progress toward low carbon cities: approaches for transboundary GHG emissions' footprinting. Carbon Management, 2011, 2, 471-482.	2.4	63
78	Conference Report: US–China Workshop on Pathways Toward Low Carbon Cities: quantifying baselines and interventions. Carbon Management, 2011, 2, 377-382.	2.4	0
79	Methodology for inventorying greenhouse gas emissions from global cities. Energy Policy, 2010, 38, 4828-4837.	8.8	386
80	Sustainable Concrete for the Urban Environment: A Proposal to Increase Fly Ash Use in Concrete. , 2010, , .		0
81	Greenhouse Gas Emission Footprints and Energy Use Benchmarks for Eight U.S. Cities. Environmental Science & Technology, 2010, 44, 1902-1910.	10.0	282
82	Design of Two-Layered Porous Landscaping Detention Basin. Journal of Environmental Engineering, ASCE, 2009, 135, 1268-1274.	1.4	12
83	Greenhouse Gas Emissions from Global Cities. Environmental Science & Technology, 2009, 43, 7297-7302.	10.0	581
84	A Demand-Centered, Hybrid Life-Cycle Methodology for City-Scale Greenhouse Gas Inventories. Environmental Science & Technology, 2008, 42, 6455-6461.	10.0	292
85	Evidence for Phytodegradation of MTBE from Coupled Bench-Scale and Intermediate-Scale Tests. Journal of Environmental Engineering, ASCE, 2007, 133, 389-396.	1.4	1
86	Integrating Developed and Developing World Knowledge into Global Discussions and Strategies for Sustainability. 2. Economics and Governance. Environmental Science & Technology, 2007, 41, 3422-3430.	10.0	16
87	Integrating Developed and Developing World Knowledge into Global Discussions and Strategies for Sustainability. 1. Science and Technology. Environmental Science & Technology, 2007, 41, 3415-3421.	10.0	25
88	Chapter 20 Engineering sustainable urban infrastructure. Sustainability Science and Engineering, 2006, , 411-434.	0.6	0
89	The Role of HVFA Concrete in the Sustainability of the Urban Built Environment. Journal of Green Building, 2006, 1, 129-140.	0.8	0
90	Transport and fate of dieldrin in poplar and willow trees analyzed by SPME. Chemosphere, 2005, 61, 85-91.	8.2	12

ANU RAMASWAMI

#	Article	IF	CITATIONS
91	Integrated Environmental Assessment Journal of Industrial Ecology, 2004, 8, 11-13.	5.5	14
92	Nonâ€significance of rhizosphere degradation during phytoremediation of MTBE. International Journal of Phytoremediation, 2003, 5, 315-331.	3.1	11
93	The potential for phytoremediation of MTBE. Water Research, 2001, 35, 1348-1353.	11.3	50
94	Batch-Mixed Iron Treatment of High Arsenic Waters. Water Research, 2001, 35, 4474-4479.	11.3	64
95	Plant-Uptake of Uranium: Hydroponic and Soil System Studies. International Journal of Phytoremediation, 2001, 3, 189-201.	3.1	39
96	Assessing Multicomponent DNAPL Biostabilization Potential. II: Aroclor 1242. Journal of Environmental Engineering, ASCE, 2001, 127, 1073-1079.	1.4	3
97	Assessing Multicomponent DNAPL Biostabilization.I: Coal Tar. Journal of Environmental Engineering, ASCE, 2001, 127, 1065-1072.	1.4	4
98	Measuring Phytoremediation Parameters for Volatile Organic Compounds: Focus on MTBE. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management, 2001, 5, 123-129.	0.4	5
99	Exploring the role of environmental factors in association and linkage studies. Genetic Epidemiology, 1999, 17, S715-S720.	1.3	0
100	Mass Transfer and Bioavailability of PAH Compounds in Coal Tar NAPLâ^'Slurry Systems. 2. Experimental Evaluations. Environmental Science & amp; Technology, 1997, 31, 2268-2276.	10.0	44
101	Mass Transfer and Bioavailability of PAH Compounds in Coal Tar NAPLâ^'Slurry Systems. 1. Model Development. Environmental Science & Technology, 1997, 31, 2260-2267.	10.0	58
102	Biodegradation of Naphthalene from Coal Tar and Heptamethylnonane in Mixed Batch Systems. Environmental Science & Technology, 1996, 30, 1282-1291.	10.0	98
103	Mass transfer and biodegradation of PAH compounds from coal tar. Water Science and Technology, 1994, 30, 61-70.	2.5	14
104	Modeling the spatial variability of natural trace element concentrations in groundwater. Water Resources Research, 1994, 30, 269-282.	4.2	4
105	Additions and Corrections: Interfacial Films in Coal Tar Nonaqueous-Phase Liquid-Water Systems. Environmental Science & Technology, 1994, 28, 756-756.	10.0	23
106	Interfacial films in coal tar nonaqueous-phase liquid-water systems. Environmental Science & Technology, 1993, 27, 2914-2918.	10.0	94